
Mining CVS repositories, the softChange experience

Daniel M. German
Software Engineering Group

Department of Computer Science
University of Victoria
dmgerman@uvic.ca

Abstract

CVS logs are a rich source of software trails (informa-
tion left behind by the contributors to the development pro-
cess, usually in the forms of logs). This paper describes
how softChange extracts these trails, and enhances them.
This paper also addresses some challenges that CVS fact
extraction poses to researchers.

1. Introduction

We have defined software trails as information left be-
hind by the contributors to the development process, such
as mailing lists, Web sites, version control logs, software
releases, documentation, and the source code [5]. Software
trails maintain a history of the development that can be used
to recover the evolution of the project, to help management
understand how it evolves and how its contributors work
and interact, and to assist its contributors in their daily tasks.
In particular, software configuration management soft-

ware, and more specifically version control software, keeps
the complete history of any file in the project, including
who modified what, when, and the delta of the modifica-
tion. CVS, the Concurrent Versions System, is arguably
the most widely used version control management system
available in the market and has become a de-facto standard
in the development of open source projects. softChange
is a tool for the extraction, enhancement and visualization
of software trails, primarily from CVS. The architecture of
softChange is depicted in figure 1. The trails extractor is
responsible for retrieving the raw software trails from the
different sources. A SQL relational database management
system is the core of softChange. A fact enhancer anal-
yses the database in order to generate new facts. Finally,
the visualizer is responsible for showing the trails to the
user. softChange has been successfully used to recover
the history of the software project Evolution (a mail client
for Unix similar to Microsoft Outlook). The results are re-

ported in [5]. softChange was used to extract Evolution’s
software trails, enhance them, and then query and visualize
them. softChange helped us to understand how the project
evolved, and how its developers collaborated. Another re-
search project in which softChange was used is described
in [4]. In this case we were interested in understanding the
way that the software developers of the GNOME project
(a large, open source project) collaborated. The analysis
of these software trails allowed the discovery of interesting
facts about the history of the project: its growth, the interac-
tion between its contributors, the frequency and size of the
contributions, and the important milestones in its develop-
ment.

cvs
repository

Web Client
with SVG support

Trails
Extractor

softChange
repository

mail
archives

bugzilla
repository

Visualizer

PostScript

softChange
 Architecture

Fact Enhancer

Figure 1. The architecture of softChange

This paper describes how softChange extracts soft-
ware trails from CVS, and the methods used to create new

17

facts. Section 2 describes related work, section 3 explains
softChange’s fact extraction in detail, with examples of
how it was used to extract the CVS software trails from four
major projects. Section 4 describes current challenges in
trail extraction from CVS. We finish with our conclusions
and future work.

2. Related Work

The two most commonly used hypertext frontends to
CVS are Bonsai [7] and lrx [6]. They operate by retrieving
the revision information of each file, which is then stored
in a relational database. Xia is a plugin for Eclipse for the
visualization of CVS repositories[10] based on the Shrimp
visualization tool [9]. Xia does not extract the CVS trails,
instead it relies on the Eclipse’s API to CVS, which makes
it extremely slow in large projects. Liu and Stroulia have
developed JReflex, a plug-in for Eclipse for instructors of
software engineering courses [8]. It is designed to compare
the differences in development styles in different teams,
who does what, who works on what part of the project, etc.
JReflex is intended to be a management oriented tool for
browsing the CVS historical data. It uses the history log
in CVS and the output of CVS log and stores the informa-
tion in a relational database. Fisher and Gall have described
a CVS fact extractor in [1], where they described the main
challenges of creating a database of CVS historical data and
then use it to visualize the interrelationships between files in
a project [2]. In [3] CVS logs are used to expose relation-
ships between classes and files that might not be found by
other methods, such as call graphs.

3. Mining a CVS repository

3.1. Retrieving file revisions

Projects mining CVS historical data have relied on pro-
cessing the output of its commands (e.g. cvs log), or the
log files in the repository (CVSROOT/history). Unfor-
tunately, the format of the output of CVS commands and
its log files is not fully documented. In order to under-
stand these formats, the first phase of the development of
softChange used a “clean room” method. Our goal was to
recover all the revisions to all the files in the repository. We
followed the following procedure:

1. We selected one project as a test case (Evolution), and
detailed the requirements for the extractor.

2. We were divided into two independent teams.

3. Each team reversed engineered the CVS formats and
proceeded to create the extractor.

4. The extractors were run on the Evolution CVS reposi-
tory, and their outputs compared.

5. When there were differences in the outputs both teams
discussed the problem and determined which team’s
extractor was faulty (in some case, both were). Teams
exchanged information about the formats but there was
never exchange of code between teams.

6. We repeated this process until the extractors generated
the same output.

7. The code from one team was dropped, and the other
became the core of softChange.

8. We then proceeded to create a set of test-cases for fu-
ture regression testing.

We have used softChange to extract the file revisions
from several projects. Table 1 shows the main statistics of
four selected projects. A snapshot of their CVS repositories
was made on Feb 17, 20041. Mozilla 2 corresponds to the
cross-platformWeb browser, Evolution is a email client for
Unix similar to Outlook, PostgreSQL is a SQL database
management system; GNU gcc is the multi platform, multi
language compiler.

Table 1. CVS statistics from selected projects

Project Authors. Files Revisions
Mozilla 672 81,520 709,234
Evolution 245 5,402 92,688
PostgreSQL 24 3,789 74,541
GNU gcc 214 24,463 60,311

3.2. Rebuilding modification requests

CVS mining projects usually work at the file revision
level. Files, however, are not usually modified alone. A
developer will modify all the files necessary to complete a
given task, and then commit them together (using the cvs
commit command). Knowing which files are modified at
the same time is important because it means that these files
are somehow related (the change in one file is related to the
change in the other file).

1You can find a copy of the cvs log command for each of the reviewed
projects in http://view.cs.uvic.ca/softChange/mining2004/

2The Mozilla CVS repository keeps track of the email address of
the developer in its cvs id. A typical Mozilla cvs id has the form
userid%domainname. An inspection of the different cvs ids suggests
that the same developer has used different cvs ids, as her corresponding
email address changes. For example these are three different cvs ids that
seem to correspond to the same person: alecf, alecf%flett.org,
alecf%netscape.com. There are 505 unique cvs ids when the do-
main name suffix has been stripped.

18

Unfortunately CVS does not keep track of which files
are committed at the same time. By analyzing the files’ re-
visions softChange tries to recover, for each cvs commit,
the files that its invocation modified. We denote a modifica-
tion request (MR) as the set of files committed simultane-
ously by a developer in a “cvs commit” command.
To our knowledge, softChange is the only tool that at-

tempts to recover modification requests. It uses a heuristic
that is based on a sliding window algorithm. This algo-
rithm takes 2 parameters as input: the maximum length of
time that an MR can last δmax, and the maximum distance
in time between two file revisions τmax. This algorithm is
depicted in figure 2. Briefly, a file revision is included in a
givenMR if a) all the file revisions in the MR and the candi-
date file revision were created by the same author and have
the same log message (a comment added by the developer
during the commit); b) the candidate file revision is at most
τmaxseconds apart from at least one file revision in the MR;
and c) the addition of the candidate file revision to the MR
keeps the MR at most δmaxseconds long.

// front(List) removes the front of the list
// top(List) and last(List)
// query the corresponding elements of the list
// Initialize set of all MRs to empty
MRS = ∅
for each A in Authors do

List = Revisions by A ordered by date
do

MR.list = {front(List)}
MR.sT ime = time(MR.list1)
while first(List).time− MR.sT ime ≤ δmax∧

first(List).time−
last(MR.list).time ≤ τmax∧

first(List).log = last(MR.list).log∧
first(List).f ile /∈ MR.list do
queue(MR.list, front(List))

od
MRS = MRS

⋃
{MR}

until List &= ∅
od

Figure 2. Algorithm to recover MRs

Most MRs take few seconds to complete. But some tend
to be rather long. There are several factors that affect the
length of a MR. First, the size and number of files that com-
pose the MR; second, the bandwidth available between the
developer’s computer and the CVS server (a slow link will
slow down the time required to do the commit); and third,
the load of the CVS server. In our experiments we have
found that τmax = 45s and δmax = 600s are good val-
ues for these parameters (these values were used to extract
the MRs discussed in this paper). Smaller values for these

parameters tend to split MRs, and larger numbers tend to
combine two MRs into one).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32

Pr
op

or
tio

n
of

 to
ta

l M
R

s
Number of files in MR (log scale)

Mozilla
Evolution

Postgresql
gcc

Figure 3. Number of files in an MRs

Most MRs contain very few files. Figure 3 shows the dis-
tribution of the number of files in a MR (normalized to val-
ues from 0 to 1). The plot only shows MRs with 25 or less
files), but there are larger MRs (for example, in Evolution
we detected anMR which included 650 files, and inMozilla
one that included 5838 files). Note that the four projects
have only 2, almost identical curves. This effect was inter-
esting enough to further explore. We discovered that the use
of ChangeLog files (files that document the changes made
to the software) accounted for this sharp difference. Evo-
lution and GNU gcc use ChangeLogs, and almost every
MR that includes two or more files includes a change to a
ChangeLog file. Mozilla andPostgreSQL do not use them.
When ChangeLogs are not taken into account all the curves
look remarkably similar. Further research is needed to ver-
ify if this is a coincidence or, indeed, this is a normal pattern
in software development. Figure 4 shows the distribution of
MRs during 2003 for the chosen projects.

3.3. Other software trails

softChange is able to retrieve and use other trails:

• ChangeLog files. If the project uses ChangeLogs,
for every MR softChange extracts the delta of the
corresponding ChangeLog file and associates it with
it. ChangeLogs were originally defined by the Free
Software Foundation, and they are commonly found
in open source projects, and their objective is to ex-
plain how earlier versions of software are different
from the current version. Figure 5 shows an excerpt
of a ChangeLog. The format of a ChangeLog delta
is very simple: the first line contains the date and au-
thor, followed by a sequence of changes (all indented).

19

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10 12

N
um

be
r o

f M
R

s

Month (2003)

Mozilla
Evolution

Postgresql
gcc

Figure 4. MRs per month, 2003

ChangeLogs are usually created by hand, although
there are some utilities that help the developer in their
creation. We plan to compare the information found
in MRs with the one recorded in ChangeLogs in or-
der to verify, both, the MR extraction algorithms and
the quality of the ChangeLogs. Some projects use the
ChangeLog delta as the corresponding CVS log mes-
sage for a given MR.

• Bugzilla: It is customary for developers to record the
Bugzilla bug number in the corresponding CVS log
message of the MR that fixes it. Because this is a free-
form, textual field, there is no standard on how this
information should be recorded. Figure 6 shows sev-
eral cvs log comments that correspond to bug fixes.
Based on our observations, the following regular ex-
pression matches the most commonly forms in which
a bug number is reported (\s corresponds to any white
space character):

(\#[0-9][0-9]+|bugs?\s+\#?[0-9][0-9]+)(,\s+\#[0-9][0-9]+)*

Unfortunately this is an error prone approach and the
bug numbers identified need to be correlated to the
Bugzilla database, in order to find out if the time that
the MR was committed is consistent with a change in
the bug report (softChange does not currently support
this verification).

• Mailing lists. Mailing lists are an important source of
information about the evolution of the project. We cur-
rently correlate MRs to mail messages by using the
author and the date attributes of both the MR and the
message. One of the problems we have encounter min-
ing email messages is that a person tends to have mul-
tiple email address, which might not be the same as the
ones recorded in the ChangeLogs.

2003-01-27 Ettore Perazzoli <ettore@ximian.com>

* tools/evolution-addressbook-export.c: #include bonobo-activation
instead of oaf.
(main): Initialize using gnome_program_init().
(save_cards): Use g_main_loop_quit() instead of gtk_exit().

* tools/evolution-addressbook-import.c: Update include list for
GNOME 2.
(main): Initialize using gnome_program_init().
(unref_executable): Use g_main_loop_quit() instead of gtk_exit().
(add_cb): Likewise.

Figure 5. Excerpt from a ChangeLog
...

* mail-display.c (mail_display_render): Set default text color
as black in body when doing printing preview. Fixs bug #48290.

...
Bugzilla bug #218: define HAVE_STRERROR only if it is not yet defined.
Thanks to David Nebinger (dnebinger@synertech.highmark.com) for reporting
the problem and suggesting the fix.

Figure 6. Excerpts from cvs log comments
referring to bug reports.

4. The challenges of mining CVS repositories

One of the consequences of a growing number of
projects extracting different software trails is the explosion
of terms to describe them. For example, [1] refers to a CVS
revision as a cvsitem, and its log as description. As the field
of mining software repositories matures, we expect that the
nomenclature becomes more consistent.
CVS commands are able to access a CVS repository in

two different forms: across the network (when the CVS
server is located on a different computer), or in the local file
system (when the CVS repository is located on the same
computer as the working copy of the repository). Mining
the repository might result in numerous requests and a large
amount of resulting data. For example, softChange can
regenerate every revision of a file. In a project such as
Mozilla, this will require requesting more than 0.7 million
different files (one for each filename, revision pair). If the
repository is located in a different computer, this process
will most certainly stressed it, and it will consume a large
chunk of its bandwidth. This problem will be aggravated if
several researchers start using Mozilla as a test case. This
problem can be avoided by having a local snapshot of the
project’s CVS repository. Having a local copy of the reposi-
tory will guarantee that the resources of the software project
are not over-used.
The creation of a common set of test cases is also needed.

Different research groups analyzing different software trails
have chosen different applications for their analysis. This
makes it difficult to compare approaches. We propose the
selection of a small set of application that could be used for
this purpose. The applications should satisfy the following
requirements:

• These applications should be a mixture of old and new,

20

applications, large, medium sized and maybe small
ones. Some should include a GUI, while some should
not have any. Some might be dead projects.

• Ideally, the original logs and historical data should be
made available to the researchers. For instance, the re-
searchers should have a copy of the CVS repository, a
dump of the Bugzilla data, a copy of the raw mailing
lists archives, etc. This is important because it avoids
potential problems created by extracting the data from
views of it (such as scrapping bugzilla data from its
Web front-end) and it also avoids the extra load on
the project servers due to the requests made by the re-
search project.

• It is necessary to agree on the period of observation of
the project. Most likely, the chosen projects are alive,
and keep changing. Hence it is necessary to specify
the start and end date for the observation of a given
project.

• Projects with open source licenses are desirable. It is
important that the project being analyzed does not put
any restrictions on the researcher (like not being able
to publish benchmarks of the application). An open
source license guarantees no discrimination against us-
ing the software. It also provides access to the source
code, and equally important, to its software trails. It is
undeniable that close-source applications are worth ex-
ploring, but they cannot be used as test-cases because
theymight not be available to any researcher that wants
to look at them.

Some projects have become typical test cases in the lit-
erature. Mozilla, for example, is one of them. But one has
to understand the characteristics of a project before using it
as a test case, in order to interpret its data correctly. The
Mozilla project started using CVS when the source code of
Netscape becameMozilla, and therefore, not all its history
is recorded. Another peculiar feature of Mozilla is that sev-
eral developers have more than one CVS id (we have found
developers with two or three cvs ids). Nonetheless, it is a
very valuable test case, as it provides the researcher with a
large, mature and widely used project that keeps evolving
and it is maintained by a large number of individuals.
One important issue that has not been clearly addressed

yet is the ethical one. Would the developers of an open
source project consider their software trails open too? What
are the implications of publishing aggregated data about a
project? For example, would it be ethical to claim (in a re-
search paper for example) that code from certain developer
tends to have more defects than any other developer’s code
in the same project? Should projects and their developers
be anonymized? The answers to these questions could be
the subject of an entire paper.

5. Conclusions and Future Work

CVS is widely used in software projects, some of which
are several years old. The information available in its logs
can be very valuable for its developers, their management
and researchers as it provides a fine-grained view of how
the software project is evolving. Unfortunately the amount
of data can be overwhelming. Work is needed in several
directions: models to describe this data, and query and vi-
sualization tools to inspect it. softChange is still under
development, but we welcome people interested on using it.

Acknowledgments

This research was supported by NSERC Canada, and the
Advanced Systems Institute of British Columbia. The au-
thor would like to thank A. Mockus (original co-author of
softChange) and the anonymous reviewers of this paper.

References

[1] M. Fischer, M. Pinzger, and H. Gall. Populating a Release
History Database from Version Control and Bug Tracking
Systems. In Proceedings of the International Conference on
Software Maintenance, pages 23–32. IEEE Computer Soci-
ety Press, September 2003.

[2] M. Fisher and H. Gall. MDS-Views: Visualizing problem
report data of large scale software using multidimensional
scaling. In Proceedings of the International Workshop on
Evolution of Large-scale Industrial Software Applications
(ELISA), September 2003.

[3] H. Gall, M. Jazayeri, and J. Krajewski. CVS Release His-
tory Data for Detecting Logical Couplings. In Proc. of the
International Workshop on Principles of Software Evolution
(IWPSE), pages 12–23. IEEE Press, November 2003.

[4] D. M. German. Decentralized open source global software
development, the GNOME experience. Journal of Software
Process: Improvement and Practice, accepted for publica-
tion.

[5] D. M. German. Using software trails to rebuild the evo-
lution of software. Journal of Software Maintenance and
Evolution: Research and Practice, to appear, 2004.

[6] A. G. Gleditsch and P. K. Gjermshus. lrx Cross-Referencing
Linux. http://lxr.sourceforge.net/, Visited Feb. 2004.

[7] T. Hernandez. The Bonsai Project. http://www.mozilla.org/
projects/bonsai, Visited Feb. 2004.

[8] Y. Liu and E. Stroulia. Reverse Engineering the Process
of Small Novice Software Teams. In Proc. 10th Working
Conference on Reverse Engineering, pages 102–112. IEEE
Press, November 2003.

[9] M.-A. D. Storey, C. Best, and J. Michaud. SHriMP Views:
An Interactive and Customizable Environment for Software
Exploration. InProc. of International Workshop on Program
Comprehension, May 2001.

[10] X. Wu. Visualization of version control information. Mas-
ter’s thesis, University of Victoria, 2003.

21

