
Automatic Labeling of Software Components and their Evolution
using Log-Likelihood Ratio of Word Frequencies in Source Code

Adrian Kuhn
Software Composition Group

University of Bern, Switzerland
http://scg.unibe.ch

Abstract

As more and more open-source software components
become available on the internet we need automatic ways
to label and compare them. For example, a developer who
searches for reusable software must be able to quickly
gain an understanding of retrieved components. This un-
derstanding cannot be gained at the level of source code
due to the semantic gap between source code and the
domain model. In this paper we present a lexical ap-
proach that uses the log-likelihood ratios of word frequen-
cies to automatically provide labels for software compo-
nents. We present a prototype implementation of our la-
beling/comparison algorithm and provide examples of its
application. In particular, we apply the approach to de-
tect trends in the evolution of a software system.

1. Introduction

In recent years, software vocabulary has been proven
to be a valuable source for software analysis, often in-
cluding the retrieval of labels (e.g. [4, 8, 11]). How-
ever, labeling software is not without pitfalls. The dis-
tribution of words in software corpora follows the same
power-law as word frequencies in natural-language text
[13]. Most of the text is made up of a small set of com-
mon terms, whereas content-bearing words are rare.
Analysis of software vocabulary must deal with the re-
ality of rare terms, thus statistical tests that assume
normal distribution are not applicable. For example,
textual comparison based on directly counting term fre-
quencies is subject to overestimation when the frequen-
cies involved are very small.

For text analysis the use of log-likelihood ratio im-
proves the statistical results. Likelihood tests do not
depend on assumptions of normal distribution, instead
they use the asymptotic distribution of binomial likeli-
hood [6]. Using log-likelihood ratios allows comparisons

to be made between the significance of occurrences of
both common and rare terms.

In this paper we present a lexical approach that uses
the log-likelihood ratio of word frequencies to automat-
ically retrieve labels from source code. The approach
can be applied i) to compare components with each
other, ii) to compare a component against a norma-
tive corpus, and iii) to compare different revisions of
the same component. We present a prototype imple-
mentation and give examples of its application. In par-
ticular, we apply the approach to detect trends in the
evolution of the JUnit software system.

The remainder of this paper is structured as follows:
In Section 2 we provide the mathematical background
of log-likelihood ratios. In Section 3 we present the ap-
plication of our approach in two examples. In Section 4
we discuss related work. In Section 5 we conclude.

2. Log-Likelihood in a Nutshell

This section explains how log-likelihood ratio is ap-
plied to analyse word frequencies. The explanations
are kept as concise as possible. We provide the gen-
eral background and just enough details such that a
programmer may implement the algorithm. Please re-
fer to Ted Dunning’s work [6] for more background.

The idea behind log-likelihood ratio is to compare
two statistical hypotheses, of which one is a subspace
of the other. Given two text corpora, we compare the
hypothesis that both corpora have the same distribu-
tion of term frequencies with the “hypothesis” given
by the actual term frequencies. Because we know that
terms are not equally distributed over source code, we
use binomial likelihood

L(p, k, n) = pk(1− p)n−k

with p = k
n , where k is the term frequency (i.e. number

of occurrences) and n the size of the corpus. Taking the
logarithm of the likelihood ratio gives

http://scg.unibe.ch

−2 log λ = 2
[

logL(p1, k1, n1) + logL(p2, k2, n2)
− logL(p, k1, n1)− logL(p, k2, n2)

]
with p = k1+k2

n1+n2
. The higher the value of −2logλ the

more significant is the difference between the term fre-
quencies in of both text corpora. By multiplying the
−2logλ value with the signum of p1 − p2 we can fur-
ther distinguish between terms specific to the first cor-
pus and terms specific to the second corpus. Terms that
are equally frequent in both corpora have a −2logλ
value close to zero and thus fall in between.

Example. Let C1 be the corpus of a software project
with size n1 = 106, where the words ‘rare’, ‘medium’,
and ‘common’ appear respectively 1, 100, and 1× 104

times; and let C2 be the corpus of one of the project’s
classes with size n2 = 1000, where each word appears
10 times. Then the log-likelihood ratio values are

p1 p2 −2logλ χ2

rare 10−6 10−2 131.58 9.08
medium 10−4 10−2 71.45 0.89
common 10−2 10−2 0.00 0.00

The column χ2 lists the value of Pearson’s chi-square
test, which assumes normal distribution. As we can
see, there is an overestimation when the frequencies in-
volved are very small. Therefore, text analysis should
use log-likelihood ratios to compare the occurrences of
common and rare terms [6].

3. Applications

In this section we present two example applications
of log-likelihood ratio for software analysis. There are
two main types of corpus comparison: comparison of
a sample corpus to a larger corpus, and comparison of
a two equally sized corpora. In the first case, we re-
fer to the large corpus as a normative corpus since it
provides as norm against which we compare.

Applications of these comparisons are

• Providing labels for components. Comparing a com-
ponent’s vocabulary with a large normative cor-
pus (as e.g. Sourceforge, Github, or Sourcerer [3]),
we obtain labels that describe the component. In
the same way, we can compare a class’s vocabu-
lary against the containing project.

• Comparing components to each other. Comparing
two components, we obtain labels to describe their
differences as well as commonalities. This is appli-
cable at any level of granularity, from the level of
projects down to the level of methods.

java.io java.text java.util

read 521.99 pattern 228.92 iterator 306.91
write 481.93 format 209.40 entry 301.90
skip 154.61 digits 183.24 next 237.82
close 113.41 FIELD 167.58 E 222.33
mark 111.47 instance 127.16 contains 187.69
println 99.66 fraction 104.98 sub 166.49
UTF 85.27 integer 102.77 of 165.57
flush 80.96 index 93.43 K 154.07
desc 69.19 run 90.99 T 154.30
TC 68.88 currency 91.55 key 145.10
prim 61.48 decimal 86.34 all 145.74
char 61.28 contract 84.92 V 142.15
buf 60.15 separator 72.11 remove 128.59
stream 56.86 grouping 62.26 last 128.09
fields 52.38 parse 56.93 map 115.68
bytes 47.99 collation 56.60 clear 114.03
.
border -28.35 UI -23.07 create -62.67
set -33.89 border -22.77 listener -62.42
remove -37.49 property -24.23 action -63.83
listener -39.79 remove -30.11 UI -64.68
accessible -40.97 accessible -32.91 border -63.83
paint -44.90 listener -31.97 accessible -92.25
value -59.10 type -32.18 paint -101.11
get -64.38 paint -36.07 get -164.14

Table 1. Labels retrieved for three Java packages
using the full Java 6.0 API as normative corpus.

• Documenting the history of a component. Compar-
ing subsequent revisions of the same component,
we obtain labels to describe the evolution of that
component. (Using multinominal distribution we
could even compare all revisions at once, although
such results are harder to interpret [6].)

We implemented −2logλ analysis in a Java prototype
which is available on the Hapax website1 under AGPL
license. In the remainder of this section we present re-
sults obtained with that prototype.

3.1. Labeling the Java API

In this example, we compare the packages java.io
and java.text and java.util with the normative cor-
pus of the full Java 6.0 API. We use the Java Com-
piler (JSR 199) to parse the byte-code of the full Java
API and then extract the vocabulary of all public and
protected elements. We extract the names of packages,
classes (including interfaces, annotations, and enums),
fields, methods and type parameters. We split the ex-
tracted names by camel-case to accomodate to the Java
naming convention.

Results are shown in Table 1. For each package we
list the most specific words and the least specific words.
All three packages are characterized by not covering UI
code, in addition java.io and java.util have obvi-
ously substantially fewer get-accessors than is usual
for the Java API. The remaining findings offer no fur-

1 http://smallwiki.unibe.ch/adriankuhn/hapax

http://smallwiki.unibe.ch/adriankuhn/hapax

ther surprises, except maybe for the uppercase letters
in java.util which are generic type parameters; obvi-
ously the majority of the Java 6.0 API makes less use
of generic types than the collection framework.

3.2. The Evolution of JUnit

In this example, we report on the vocabulary trends
in the history of the JUnit2 project. We use a collec-
tion of 14 release distributions of JUnit and parse the
source code of each release. We compare the vocabu-
lary of each two subsequent releases and report on the
most significant changes in the vocabulary. We extract
all words, including comments; split by camel-case, and
exclude English stopwords but not Java keywords.

Results are shown in Table 2. For each release we
list the top removed terms and the top added terms, as
well as the −2logλ value of the top-most term. Large
−2logλ values indicate substantial changes.

The top 7 change trends (i.e. −2logλ > 100.0) in
the history of JUnit are as follows. In 3.2 removal of
MoneyBag example and introduction of graphical UI;
in 4.0 removal of graphical UI and introduction of
annotation processing; in 4.2 removal of HTML tags
from Javadoc comments; in 4.4 introduction of the-
ory matchers and hamcrest framework; in 4.5 intro-
duction of blocks and statements. We manually veri-
fied these findings with the release notes of JUnit and
found that the findings are appropriate.

4. Related work

The present work is related to Jonathan Feinberg’s
comparison of inaugural addresses [7]. Feinberg anal-
ysed the inaugural address of Mr. President Barack
Obama and his predecessors in office. For each inau-
gural addresses he provides a pair of Wordle3 word
clouds. One cloud consists of words that are specific to
the address, and the other cloud consists of words that
are missing in the address. Font size is used to repre-
sent frequency of a word and saturation to represent
the log-likelihood ratio. The color blue is used in the
left cloud to represent likely terms, and red is used in
the right cloud to represent unlikely terms.

Anslow et. al. [1] visualized the evolution of words
in class names in Java version 1.1 and Java version 6.0.
They illustrated the history in a combined word cloud
that contains terms from both versions. Each word is
printed twice, font size represents word frequency and
color the corpus. As such they compared word counts,

2 http://www.junit.org

3 http://www.wordle.net

JUnit 2logλ Top-10 terms (with −2logλ > 10.0)
3 -8.21

54.11 count, writer, wrapper
3.2 -382.80 money, CHF, assert, case, USD, equals, test, fmb,

result, currency
114.21 tree, model, constraints, combo, reload, swing,

icon, pane, browser, text
3.4 -19.48 stack, util, button, mouse

15.73 preferences, base, zip, data, awtui
3.5 -38.78 param, reload, constraints

69.34 view, collector, context, left, cancel, values,
selector, views, icons, display

3.6 -1.20
8.72

3.7 -8.25
2.79

3.8 -13.30 deprecated
23.40 printer, boo, lines

4.0 -349.34 constraints, grid, bag, set, label, panel, path,
icon, model, button

350.47 description, code, nbsp, org, annotation,
notifier, method, request, runner, br

4.1 -1.43
61.90 link, param, check

4.2 -288.53 nbsp, br
20.03 link, builder, pre, li

4.3.1 -8.91
53.36 array, actuals, expecteds, multi, dimensional,

arrays, values, javadoc
4.4 -34.32 introspector, code, todo, multi, javadoc,

dimensional, array, runner, test, fix
151.98 matcher, theories, experimental, hamcrest,

matchers, theory, potential, item, supplier,
parameter

4.5 -30.11 theory, theories, date, result, static, validator,
pointer, string, assert, experimental

124.28 statement, model, builder, assignment, block,
errors, unassigned, evaluate, describable,
statements

Table 2. Evolution of JUnit: for each release we
list the removed and the added words, large 2logλ
values indicate more significant changes.

which assumes normal distribution and is thus not as
sound as using log-likelihood ratios.

Kawaguchi et. al. [10] presented MUDABlue, a tool
that provides labels for projects. They used Sourceforge
as normative corpus and applied Latent Semantic In-
dexing (LSI) at the level of projects. They categorized
projects and described the categories with the most
similar terms. However, the probabilistic model of LSI
does not match observed data: LSI assumes that words
and documents form a joint Gaussian model, while a
Poisson distribution has been observed [9].

Lexical information of source code has been further
proven useful for various tasks in software engineer-
ing (e.g. [2, 16, 17]). Many of these approaches apply
Latent Semantic Indexing and inverse-document fre-
quency weighting, which are well-accpeted techniques
in Information Retrieval but are according to Dunning
“only justified on very sketchy grounds [6].”

Baldi et. al. [5] present a theory of aspects (the pro-
gramming language feature) as latent topics. They ap-
ply Latent Dirichlet Analysis (LDA) to detect topic

http://www.junit.org
http://www.wordle.net

distributions that are possible candidates for aspect-
oriented programming. They present the retrieved top-
ics as a list of the 5 most likely words. The model
of LDA assumes that each topic is associated with a
multinomial distribution over words, and each docu-
ment is associated with a multinomial distribution over
topics; their approach is thus sound.

5. Conclusion

We presented log-likelihood ratio as a technique to
label software components. Using log-likelihood ratios
allows comparisons to be made between the significance
of occurrences of both common and rare terms. We pre-
sented how to use the log-likelihood ratio of word fre-
quencies to retrieve labels, and how to compare a com-
ponent against a normative corpus. In addition, we pro-
posed to use log-likelihood ratios to characterize the
evolution of a software component. We presented the
results of two example applications, one using the Java
API as case study, the other using 14 releases of JU-
nit as case study. By comparing subsequent revisions of
JUnit to each other we were able to characterize sub-
stantial changes in the history of JUnit.

Acknowledgments: We thank Oscar Nierstrasz for his
feedback on this paper. We thank Dominique Matter
for his help with the parameters of log-likelihood ra-
tios. We gratefully acknowledge the financial support of
the Swiss National Science Foundation for the project
“Bringing Models Closer to Code” (SNF Project No.
200020-121594, Oct. 2008 - Sept. 2010).

References

[1] C. Anslow, J. Noble, S. Marshall, and E. Tempero. Visu-
alizing the word structure of java class names. In OOP-
SLA Companion ’08: Companion to the 23rd ACM SIG-
PLAN conference on Object-oriented programming sys-
tems languages and applications, pages 777–778, New
York, NY, USA, 2008. ACM.

[2] G. Antoniol, U. Villano, E. Merlo, and M. D. Penta. An-
alyzing cloning evolution in the linux kernel. Informa-
tion and Software Technology, 44(13):755–765, 2002.

[3] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer: An
internet-scale software repository. In Proceedings of 1st
Intl. Workshop on Search-driven Development, Users,
Interfaces, Tools, and Evaluation (SUITE’09), page Too
appear, 2009.

[4] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Ba-
jracharya. A theory of aspects as latent topics. In OOP-
SLA ’08: Proceedings of the 23rd ACM SIGPLAN con-
ference on Object-oriented programming systems lan-
guages and applications, pages 543–562, New York, NY,
USA, 2008. ACM.

[5] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Ba-
jracharya. A theory of aspects as latent topics. In OOP-
SLA ’08: Proceedings of the 23rd ACM SIGPLAN con-
ference on Object-oriented programming systems lan-
guages and applications, pages 543–562, New York, NY,
USA, 2008. ACM.

[6] T. Dunning. Accurate methods for the statistics of
surprise and coincidence. Computational Linguistics,
19(1):61–74, March 1993.

[7] J. Feinberg. Comparison of inaugural addresses. Web-
site (retrieved March 4, 2009), Feb. 2009. Available at:
http://www.research.ibm.com/visual/inaugurals.

[8] E. Hoest and B. Ostvold. The java programmer’s phrase
book. In Proceedings of 1st Int. Conf. on Software Lan-
guage Engineering, pages 1–10, 2008.

[9] T. Hofmann. Probabilistic latent semantic analysis. In
In Proc. of Uncertainty in Artificial Intelligence, UAI99,
pages 289–296, 1999.

[10] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. In-
oue. Mudablue: An automatic categorization system
for open source repositories. In Proceedings of the 11th
Asia-Pacific Software Engineering Conference (APSEC
2004), pages 184–193, 2004.

[11] A. Kuhn, S. Ducasse, and T. Gı̂rba. Semantic cluster-
ing: Identifying topics in source code. Information and
Software Technology, 49(3):230–243, Mar. 2007.

[12] A. Kuhn, P. Loretan, and O. Nierstrasz. Consistent
layout for thematic software maps. In Proceedings
of 15th Working Conference on Reverse Engineering
(WCRE’08), pages 209–218, Los Alamitos CA, Oct.
2008. IEEE Computer Society Press.

[13] E. Linstead, L. Huges, C. Lopes, and P. Baldi. Explor-
ing java software vocabulary: A search and mining per-
spective. In Proceedings of 1st Intl. Workshop on Search-
driven Development, Users, Interfaces, Tools, and Eval-
uation (SUITE’09), page Too appear, 2009.

[14] A. Marcus and J. Maletic. Recovering documentation-
to-source-code traceability links using latent semantic
indexing. In Proceedings of the 25th International Con-
ference on Software Engineering (ICSE 2003), pages
125–135, May 2003.

[15] A. Marcus and J. I. Maletic. Identification of high-level
concept clones in source code. In Proceedings of the 16th
International Conference on Automated Software Engi-
neering (ASE 2001), pages 107–114, Nov. 2001.

[16] A. Marcus and D. Poshyvanyk. The conceptual cohe-
sion of classes. In Proceedings International Conference
on Software Maintenance (ICSM 2005), pages 133–142,
Los Alamitos CA, 2005. IEEE Computer Society Press.

[17] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimthy.
Using information retrieval based coupling measures
for impact analysis. Empirical Software Engineering,
14(1):5–32, Feb. 2009.

[18] P. Rayson and R. Garside. Comparing corpora using
frequency profiling. In Proceedings of the Workshop on
Comparing Corpora, pages 1–6, Oct. 2000.

http://www.research.ibm.com/visual/inaugurals

	Introduction
	Log-Likelihood in a Nutshell
	Applications
	Labeling the Java API
	The Evolution of JUnit

	Related work
	Conclusion

