
On Mining Data across Software Repositories∗

Prasanth Anbalagan1 Mladen Vouk2

Department of Computer Science , North Carolina State University, Raleigh, NC 27695, USA
1panbala@ncsu.edu 2vouk@ncsu.edu

Abstract

Software repositories provide abundance of valuable in-
formation about open source projects. With the increase
in the size of the data maintained by the repositories, au-
tomated extraction of such data from individual reposito-
ries, as well as of linked information across repositories,
has become a necessity. In this paper we describe a frame-
work that uses web scraping to automatically mine reposi-
tories and link information across repositories. We discuss
two implementations of the framework. In the first imple-
mentation, we automatically identify and collect security
problem reports from project repositories that deploy the
Bugzilla bug tracker using related vulnerability information
from the National Vulnerability Database. In the second,
we collect security problem reports for projects that deploy
the Launchpad bug tracker along with related vulnerabil-
ity information from the National Vulnerability Database.
We have evaluated our tool on various releases of Fedora,
Ubuntu, Suse, RedHat, and Firefox projects. The percent-
age of security bugs identified using our tool is consistent
with that reported by other researchers.

1 Introduction
Mining software repositories is an important activity

when analysing projects. Mining information across mul-
tiple data sources is one of the challenges [8, 5]. We ob-
served that relevant information from one repository can
complement the mining activity on another repository. For
example, the Bugzilla bug tracker forMozilla1 andRed Hat
projects2 contain custom “keywords”, textual tags, that help
identify specific categories of bugs in the database. The
keyword security relates to a security bug3. This could
have been used to identify the security bugs in projects
like Fedora4, Firefox5 etc. But the usage of the key-

∗This work is supported by the U.S. Army Research Office (ARO) un-
der grant W911NF-08-1-0105 managed by NCSU Secure Open Systems
Initiative (SOSI).

1https://bugzilla.mozilla.org/
2https://bugzilla.redhat.com/
3https://bugzilla.redhat.com/describekeywords.cgi
4http://fedoraproject.org/
5http://www.mozilla.com/en-US/firefox/

Figure 1. Framework

word was not consistent across bug reports. The Common
Vulnerability Exposure6(CVE) site maintains information
about publicly known vulnerabilities. The vulnerabilities
tagged by CVE are contained in theNational Vulnerabil-
ity Database7(NVD), a U.S. government repository devised
to manage vulnerability data. The NVD database lists vul-
nerabilities specific to different types of products including
Fedora (Red Hat), Firefox (Mozilla) etc. Theexternal re-
sourcesection of each vulnerability listed in the NVD has a
mapping or link to the bugs in their respective bug-tracking
system. This implies that information from the NVD can
be utilised in mining security bugs in projects likeFirefox,
Fedoraetc.

For projects, like Ubuntu, that deploy the Launchpad bug
tracker, the search engine allows to search for bugs with
CVE tags. These CVE tags in turn can be used to collect
linked vulnerability characteristics in terms of the nature of
exploits, impacts, and their metric values present in the the
NVD. Extracting such information would give additional
context to information available through individual repos-
itories. Manually extracting such information is tedious.In
this paper we

6http://cve.mitre.org/
7http://nvd.nist.gov/

1



• Discuss a framework that helps in automatically min-
ing linked information across repositories.

• Discuss its implementation in the context of identify-
ing security bugs in projects that use the Bugzilla bug
tracker by mining linked information from the NVD.

• Discuss its implementation in the context of mining se-
curity bugs from repositories that deploy the Launch-
pad bug tracker along with related vulnerability infor-
mation from the NVD.

• Discuss the use of the tool on theFedora, Ubuntu,
Suse, RedHat, andFirefox projects.

The rest of the paper is organized as follows. Section
2 discusses related work. Section 3 discusses the frame-
work. Section 4 discusses implementations of the frame-
work. Section 5 discusses results from application of our
tool. Section 6 concludes the paper.

2 Related Work
Robles et al. [7] propose an architecture for automated

retrieval and analysis of data from open source reposito-
ries like CVS and archives of source packages. The authors
discuss on including support for bug tracking systems and
mailing lists as future work. Similarly, Neuhaus et al. [6]
retrieve vulnerability information from bug databases and
CVS repositories. Hassan [5] discusses the challenges in
mining software respositories. The author identifies linking
data across repositories as one of the open challenges in this
area. In this paper, we address this limitation in mining data
from individual repositories as well as linked information
across repositories.

3 Framework
Figure 1 shows an overview of our framework. It con-

sists of: the exploratory study, the HTML downloader, and
the HTML parser. we discuss the components in detail in
the following sections.

3.1 Exploratory study

Exploratory studyrefers to the preliminary work done to
identify the relation between the repositories under consid-
eration and collect details required to extract data from the
repositories. The output of this study would be thereposi-
tory relation identifier, URL patterns, and thedata formats.

We define a repository relation as an identifier ob-
tained from one repository that would help in search
of information in another repository. For example, the
vulnerability summary provided by the NVD contains a
mapping or link to individual bugs in the project’s bug
repositories. Consider the vulnerability summary for
the Firefox vulnerability CVE-2007-36568 in the NVD.

8http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-3656

Figure 2. NVD and Bug repositories using
Bugzilla

The external source section of this summary has the link
”https://bugzilla.mozilla.org/showbug.cgi?id=387333”
which maps to theFirefoxbug repository. We call this map-
ping or link a repository relation. Also, the vulnerabilities
listed in NVD have a unique CVE tag (eg.CVE-2007-3656)
associated with each of them. We observed that bug
repositories use this CVE tag either in the bug summary
or the bug description section. This unique CVE id could
also be used as a repository relation. Projects likeUbuntu
quote the CVE tag in their bug reports. This may not be
true for all projects. It is necessary to carefully examine the
repositories, understand their usage of keywords or tags,
and make sure the usage is consistent across bug reports.

URL patternsrefer to the patterns observed in the HTTP
or HTTPS requests used by the search engines of the re-
spective project’s bug tracker. In our implementation, the
patterns are simple URL links observed in the address bar
of the browser when one uses the search engines but with-
out the parameter values. For example, consider the URL
used by the search engine in the Redhat’s Bugzilla”https :

//bugzilla.redhat.com/buglist.cgi?query format =

advanced&classification = Fedora&product =

Fedora&bugstatus = NEW”. This URL is used to list
all NEW bugs for theFedoraproduct. Here theURL pat-
tern would include the url but without the parametersFe-



Figure 3. NVD and Bug repositories using
Launchpad

dora andNew. Parameters will be passed as arguments to
theHTML downloaderbased on the URL pattern and type
of data or product required. We need to identify theURL
patternfor generic search engine usage as well as for view-
ing individual sections in a bug report. The latter is required
to extract information for each bug while the former is re-
quired to collect the list of all the bugs in the bug reposi-
tory using generic search requests. For example,”https :

//bugzilla.redhat.com/show activity.cgi?id = ” refers
to theURL patternto view the activity log of each bug re-
port. As the bug ids are collected, thisURL patternwill be
appended with the individual bug ids and executed to view
their activity log.

Data formatsrefer to the formats in which the required
data is stored in the repositories. In our implementation, we
collected information in terms of calendar time when the
bug was reported and fixed. For example, Redhat’s Bugzilla
maintains the timing usingYear-month-day hour-minute-
secondsformat (Example: 2007-01-11 08:20:30). Vulnera-
bility characteristics in NVD are storied in the format (AV:
x /AC: x /Au: x /C: x /I: x /A: x), where the attribute AV is
the access complexity, Au is the authentication complexity,
C is the confidentiality impact, I is the integrity impact, A
is the availability impact, and x is the respective attribute’s
value.

3.2 HTML downloader and HTML parser

The HTMl downloaderuses theURL patternsto auto-
matically collect information from the repositories based
on the parameter values passed during execution. The out-
put of theHTML downloaderis the HTML dump of the
search result returned for each of the HTML requests auto-
matically invoked. In other words, the output is the HTML
version of the webpage that would be displayed when a
user searches for information using the search engine. The
HTML parseruses thedata formatsobtained from theex-
ploratory studycomponent to parse this HTML output and
extract the required information. We used libraries from
HTMLScraper9, an open source project, to implement the
HTML downloaderand HTML parsercomponents of the
tool.

4 Implementation
Figures 2 and 3 show the implementation of our

framework between the NVD and projects that deploy
BUGZILLA and Launchpad bug trackers respectively. Fig-
ure 2 shows the implementation where information from
the NVD is used to identify security bugs in the respec-
tive project’s bug repositories. Figure 3 shows the im-
plementation where security bugs are directly mined from
project bug repositories that deploy Launchpad bug tracker
and then collect related vulnerability characteristics from
the NVD.

In our first implementaion, a list of CVE ids for vul-
nerabilities specific to a project is given as input to the
HTML downloader. The HTML downloaderretrieves the
HTML data of the vulnerability summary for each vul-
nerability in the list using their CVE ids. In this case,
each CVE id is appended to the URL pattern”http :

//web.nvd.nist.gov/view/vuln/detail?vulnId = ” to
retrieve the vulnerability summary. Then theHTML parser
identifies the mapping or link to the bug repositories from
the HTML output. Next, theHTML downloaderuses the
identified links and retrieves the HTML data of the activ-
ity log section of each bug report in the respective bug re-
spoitory. The activity log contains the timestamp when the
bug was reported and fixed. Based on the data format in
which the timestamps were stored, theHTML parseriden-
tifies the date and time when each bug was reported and
fixed. This implementation was evaluated on projects like
Firefox andFedora. We collected the timestamps for use in
our published works [4, 3].

In our second implementation, theHTML downloader
automatically retrieves the list of bugs from the bug repos-
itory using the URL pattern similar to in Section 3.1 for
projects that use Launchpad bug tracker. Launchpad bug
tracker allows to search for bugs tagged with CVE id. The

9http://sourceforge.net/projects/HTMLscraper/



CVE ids are displayed along with the bug ids when one uses
the search engine. TheHTML parserparses this output and
extracts the bug ids, and the CVE ids associated with them.
Once the bug ids and CVE ids are extracted, the activity
log data and the vulnerability characteristics were extracted
by using theHTML downloaderand theHTML parserin a
similar fashion as in the first implementation. This imple-
mentation was evaluated on theUbuntuproject.

5 Discussion

We collected time specific information for security bugs
from the individual bug repositories along with the data
from the NVD. Table 1 shows the data collected in terms
of the number of security and non-security bugs forFedora
(releases 1 to 8), SuseLinux (releases 10.1, 10.2) OpenSuse
(releases 10.2, 10.3), Ubuntu (releases 4.10 to 8.10), and
RedHat Enterprise Linux (releases 2.1 to 5). From the ta-
ble, we find that security bugs account for roughly 0.5%
to 5% of the total number of bugs. This is consistent with
the rates reported by other researchers [2, 1]. The security
bugs have been identified using the approaches explained
in this paper. We have successfully utilised the tool in our
published works on reliability analysis of open source soft-
ware [4, 3]. We plan to make the tool open source software
and release it on Sourceforge10.

It is possible to find more than one repository relation
and retrieve data across repositories. In our implementation,
we identified the relation as the mapping or links present in
the NVD vulnerability summary. Since these links could be
used directly by the HTML downloader, we considered this
repository relation. We could also search for CVE ids in the
summary section of the bugs, and there by identify security
bugs. In this case, we need to collect the CVE ids from each
of the bugs and then retrieve the corresponding vulnerabil-
ity information from the NVD. We have implemented this
approach for Suse and RedHat projects.

6 Conclusion

We have studied data across the NVD and repositories of
projects that deployBugzilla andLaunchpadbug trackers,
and identified that relevant information from one repository
can help in mining activity in other repositories. We have
proposed a general framework to help in mininig linked
data across repositories. We implemented and evaluated our
framework for the projectsFedora, Ubuntu, andOpenSuse.
Our results show that the tool can help in simplifying the
task of automatically mining data from individual reposito-
ries as well as linked data across repositories.

10http://sourceforge.net/

Table 1. Tool Statistics

Project Non-security Security Total Percentage

Fedora 48077 908 48985 1.85

Ubuntu 71408 1086 72494 1.49

OpenSuse 8747 66 8813 0.75

SuseLinux 6975 56 7031 0.80

Firefox 8506 367 8139 4.30

RedHat (RHEL) 22496 822 23318 3.52

References

[1] O. H. Alhazmi and Y. K. Malaiya. Modeling the vulnerabil-
ity discovery process. InISSRE ’05: Proceedings of the 16th
IEEE International Symposium on Software Reliability Engi-
neering, pages 129–138, Washington, DC, USA, 2005. IEEE
Computer Society.

[2] O. H. Alhazmi and Y. K. Malaiya. Application of vulnerabil-
ity discovery models to major operating systems.Reliability,
IEEE Transactions on, 57(1):14–22, March 2008.

[3] P. Anbalagan and M. Vouk. Security failure estimation for
open source software: An empirical approach. InWDSE ’08:
Proceedings of the 1st Workshop on Dependable Software En-
gineering, Seattle, WA, USA, 2008. IEEE Computer Society.

[4] P. Anbalagan and M. Vouk. Student paper:on reliability anal-
ysis of open source software-fedora. InISSRE ’08: Proceed-
ings of the 19th IEEE International Symposium on Software
Reliability Engineering, Seattle, WA, USA, 2008. IEEE Com-
puter Society.

[5] A. Hassan. The road ahead for mining software reposito-
ries. InIn Proceedings of Frontiers of Software Maintenance,
2008. FoSM 2008, pages 48–47, 2008.

[6] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. Pre-
dicting vulnerable software components. InProceedings of
the 14th ACM Conference on Computer and Communications
Security, pages 529–540, October 2007.

[7] G. Robles and J. Carlos. Gluetheos: Automating the retrieval
and analysis of data from publicly available software repos-
itories. In In Proceedings of the International Workshop on
Mining Software Repositories, pages 28–31, 2004.

[8] T. Zimmermann. Knowledge collaboration by mining soft-
ware repositories. InProceedings of the 2nd International
Workshop on Supporting Knowledge Collaboration in Soft-
ware Development, pages 64–65, September 2006.


