
Evolution of the core team of developers in libre software projects

Gregorio Robles, Jesus M. Gonzalez-Barahona, Israel Herraiz
GSyC/LibreSoft, Universidad Rey Juan Carlos (Madrid, Spain)

{grex,jgb,herraiz}@gsyc.urjc.es

Abstract

In many libre (free, open source) software projects, most
of the development is performed by a relatively small number
of persons, the “core team”. The stability and permanence
of this group of most active developers is of great impor-
tance for the evolution and sustainability of the project.
In this paper we propose a quantitative methodology to
study the evolution of core teams by analyzing informa-
tion from source code management repositories. The most
active developers in different periods are identified, and
their activity is calculated over time, looking for core team
evolution patterns. Several activity plots and parametersfor
characterizing these patterns are presented, and applied to
several large, well-known libre software projects, where their
effectiveness is validated and discussed.

1. Introduction

Employee turnover is known to be high in the traditional
software industry since many years ago [1]. However, in
libre software1 projects the study of developer turnover has
not been an active research topic. Most of the attention in
this area has been focused on the organizational structure of
the projects [2], with little attention to the dynamics of the
developers.

A noteworthy contribution in this sense, although it does
not address the evolution of developer communities, is the
onion model[3], which shows how developers and users
are positioned in communities. In this model, it is possible
to differentiate among core developers (those who have a
high involvement in the project), codevelopers (with specific
but frequent contributions), active users (contributing only
occasionally) and passive users [4], [5].

The onion model provides only a static picture of a
project, lacking the time dimension that is required for
studying joining and leaving processes. Jensen et al. [6]
have studied and modeled the processes of role migration
for some libre software communities, focusing on end-users
who become developers. This has lead to the finding of
different paths for the joining process, concluding that the
organizational structure of the studied projects is highly

1. In this paper we will use the term “libre software” to referboth to
software licensed under terms compliant with the FSF definition of “free
software” or with the OSI definition of “open source software”.

dynamic in comparison to traditional software development
organizations. With respect to abandonment, the number of
developers leaving a project has been studied in [7] by using
the half-life parameter, defined as the time required for a
certain group of contributors to fall to half of its initial
population; in the case of the Debian project the obtained
half-life was of 7.5 years.

Given these precedents, the authors of this paper begun to
study projects to better understand the evolution of the group
of developers contributing to a libre software project, in
particular of the the most active ones. For this, a characteri-
zation is proposed based on two extreme scenarios: the “code
gods” scenario, in which the composition of the core team
is highly stable over time, and the “series of generations”
scenario, where several generations succeed each other. In
the first case, a project relies heavily on a small number of
long contributing developers, which would imply a great risk
in case a significant fraction of them leave. In the second
case the project shows a series of partially overlapping core
teams, with some of the initial members leaving the project,
but others joining and filling the gap.

A specific methodology has been designed to quantita-
tively characterize a project in the spectrum between these
two scenarios, and to visualize more in detail the evolutionof
the core team. The first steps of this methodology, applied
to a few projects, are depicted in [8]. An extension and
refinement of the methodology is presented in this paper,
where it is used on a larger amount of libre software projects.

The rest of this paper is organized as follows. The next
section describes the methodology that has been designed
to extract data from source code management systems and
produce indexes, graphs and maps that help to understand
the evolution of the core team. After it, several cases are
discussed to illustrate the use of the methodology, and to
some extent validate it. These cases are a part of the study
of 19 large libre software projects, which are also discussed
in combination. A final section with some conclusions and
hints about further research closes the paper.

2. Methodology

The methodology used in this study is based on retrieving
data about the activity of developers from source code man-
agement repositories, which are mined using CVSAnalY [9].
This tool retrieves information about every commit to the

repository, and inserts it into a database where it can be
conveniently analyzed.

2.1. Summary of the methodology

To characterize the evolution of the core team, first the
life of the project is split in periods of equal duration. Then
for every periodi, the most active developers are identified
asCoreTeami. This is done by calculating the number of
commits during that period for the most active developers.
For eachCoreTeami, its activity is tracked for the rest of
the life of the project (before and after periodi). Hence, for
each periodj, the number of commits is calculated for all
the developers inCoreTeami. Finally, the resulting data
(that represents the activity of the eachCoreTeami for
all periods) is plotted in several formats, and collapsed into
some indexes that allow comparison and classification.

In all the cases, only commits on source code files have
been considered, since the study is focused on the behavior
of developers working on source code (for further details,
please refer to [10]).

There are some cases which can be a source of problems
when applying the methodology: both automatic commiters
(present in some projects for routine operations) and dif-
ferent patterns of work may influence the results for spe-
cific projects. However, experience after analyzing a large
quantity of projects tends to show that these effects can, in
general, be neglected.

In addition, CoreTeami and CoreTeamj may include
developers in common, as a developer can be a part of the
most active group in several periods. This is important to
notice to correctly interpret the information provided by the
methodology.

2.2. Duration of the periods

The selection of the duration of the periods in which the
life of the project is divided is basic for the definition of the
notion of “history” of a core team. The smaller the period,
the more transient effects can be found (such as developers
on vacation, or different activity patterns when the project is
close to a release). But the larger the period, the lesser detail
is captured, maybe losing important transitions, meaningful
for our study.

In addition, projects of different life lengths will have
different number of periods, if periods of constant duration
are used. This could cause difficulties when comparing
results, but will at the same time allow to better understand
the behaviors related to the length of the history of projects.
The opposite option, using a constant number of periods for
projects of any length, can be more useful for comparisons,
but will neglect those aspects related to project age.

Because of all these trade-offs, we have not considered a
single time span for periods. For the purposes of the study,

usually the most significant results are obtained by dividing
the history of the project into 10 or 20 periods. These also
produce periods of a reasonable duration both for relatively
young (about 2 to 4 months for projects with 3 years of
development) and old projects (6 to 12 months for projects
with around 10 years). To ensure that we are not losing any
important information, we have obtained several plots using
equal time intervals of three months; as it will be shown in
later sections, using the former or the later does not give
significant differences.

2.3. Identification of the core team

Libre software projects usually show power law or similar
distributions for the number of contributions by develop-
ers [4], [11], [12]. In other words, a small fraction of all
the developers are responsible for a large fraction of all
the activity. Because of that, the criterion chosen for the
identification of core teams we have chosen is the fraction
of developers who produce more commits.

After considering several alternatives, we have found that
fractions of 0.1 and 0.2 (that is, the top 10% and 20%) are
large enough to capture developers producing most of the
activity (usually more than 50%, reaching in many cases as
much as 90% or 95% of the total number of commits).

3. Outputs of the methodology

Our methodology provides both some graphs that help to
visualize the results and some data (in the form of arrays
and indexes).

3.1. Arrays and indexes

The main output of the methodology is the
AbsoluteMatrix: a squared two dimensional array,
with the number of periods as range. Values for each
position x, y in the array are the absolute number of
commits forCoreTeamx in periody. Therefore, positions
in the diagonal (wherex = y) correspond to the activity of
each core team during the period in which it is actually the
core team. Positions wherey > x represent the activity of
that core team in periods after that moment, whiley < x

represent the ’past’ activity of that team.
From other point of view, each row (samex value) repre-

sents the history of activity ofCoreGroupx. Each column
(samey value) gives the activity of all core groups during
periody. These clues can help to interpret absolute matrices,
and the graphs produced when plotting their contents.

Absolute matrices, carrying absolute number of commits
in each position, are sensitive to the total activity of the
project. In some cases, this makes it difficult to compare
periods of different levels of activity (for instance, whenthe
focus is the importance of a certain core team during all

the periods). For these cases, theNormalizedMatrix is
produced. It is calculated from the absolute matrix, using for
each position its original value divided by the total number
of commits in the corresponding period:

NormalizedMatrixx,y =
AbstoluteMatrixx,y

TotalCommitsy

An alternative chance for normalization is to use the
activity of the core team of each period instead of the total
activity in each period (it can be easily shown how the
positions in the diagonal in this matrix have always a value
of 1):

CoredMatrixx,y =
AbstoluteMatrixx,y

AbsoluteMatrixy,y

Complete arrays provide a lot of information, but they
are also in some cases too detailed and difficult to interpret.
Therefore, a single parameter,Index, which summarizes the
information in a matrix, could be calculated as follows:

Index = 100 ∗
∑

x6=y

CoredMatrixx,y

Note that high values for this index are indicative for a
higher “load” on all positions, which means that the activity
of the different core teams is high over their whole history
(a situation that is close to the “code gods” scenario, as this
happens when the composition of the core group changes
seldom). The smallerIndex is, the more positions with
little activity, pointing out the existence of a heterogeneity
of developers composing the core teams (having a “series
of generations” scenario).

3.2. Graphs

Several graphs are produced to visualize and help with
the interpretation of the previous data:

• Absolute graph. Displays the absolute number of com-
mits for each core group (Y axis) for each interval over
time (X axis). This graph is obtained by plotting the
data in eachAbsoluteMatrixx row.

• Aggregated graph. Displays the aggregated number of
commits for each core group since the beginning of the
project (Y axis) versus time (X axis). This graph shows
the integral of the absolute graph.

• Normalized graph. Displays the fraction of the total
commits performed by each core group for each interval
(Y axis) versus time (X axis). This graph shows the
same information than the absolute graph, but normal-
ized by the total number of commits performed in each
period, and can be obtained by plotting the data in each
NormalizedMatrixx row.

• Heat map. Displays theCoredMatrix, with a color
(or gray-scale) for each position. Provides a quick yet
detailed view of the evolution of core groups over time.
The history of each core group can easily be observed,

with high activity periods ashot areas, while periods
with little activity will appearcold.

• Normalized 3D map. This is a three dimensional view
of the NormalizedMatrix, with Z axis representing
the normalized activity per position. Provides similar
information to the one in the heat map, but can be in-
terpreted with more detail if a 3D browser is available.

• Absolute 3D map. This is a three dimensional view
of the AbsoluteMatrix, with Z axis representing the
activity per position. Similar to the normalized 3D map,
but information about the total level of activity for each
position is also provided.

The combined observation of these graphs, for different
time periods (10 or 20), and using different fractions of
developers for identifying core groups (top 10% or 20%),
provides a complete landscape of the activity of the core
group over time project.

4. Some case studies

The methodology described in the previous section has
been applied to 19 different projects. All of them are at
least six years old, so that they have enough history to
analyze. Table 1 in the Appendix shows a summary of the
main parameters of these projects (including several indexes,
which will be discussed below and are a good estimator for
the behavior of their core teams).

Among them, we have selected three cases to illustrate
the use of the methodology more in detail. Two of them are
close to the extreme scenarios: code gods (the GIMP) and
series of generations (Mozilla). The third project (Evolution)
is between these to ends, and shows some peculiarities that
are worth mentioning. Results for the rest of the case studies
are given in combination in the last subsection.

4.1. Case study: the GIMP

The GIMP can be considered as a canonical example of
a project with “code gods”. It is a very active project (by
number of commits) with many developers involved.

Graphs in figure 1 show the typical pattern of code gods
scenarios. The lines in all graphs are almost overlapping,
which means that all the core teams have almost the same
composition. However, the core team is not always exactly
the same. A detailed study of the developers in the core
teams yields that one of the most active developers is present
in all of them. The second and third most active developers
enter during the third interval (which starts around mid 1999)
and stay in the project until today.

The normalized graph, also shown in figure 1, provides
further information. By construction, the higher curve in
each period corresponds to the core team that has been
identified in it. In the case of a “code gods” project, the
other core groups should be near that maximum (or at the

Index
Project Size Commits Commiters Age 10 / 10 10 / 20 20 / 10 20 / 20
Eclipse 4298K 801403 189 68 22.26 33.35 20.22 32.25

Evolution 300K 125938 369 121 32.19 28.79 29.84 29.35

FreeBSD 2085K 241809 345 164 38.61 40.97 36.37 39.48

Galeon 93K 34826 139 120 35.81 28.40 36.52 30.07

GIMP 603K 187522 229 121 45.20 37.22 51.53 39.01

Gnumeric 253K 106327 206 121 49.12 41.14 51.56 46.76

Kdebase 373K 251241 550 117 31.3 33.83 30.78 35.40

Kdelibs 585K 241916 572 117 36.68 34.42 38.51 35.67

Kdenetwork 318K 157762 387 115 20.64 24.68 19.17 22.80

Kdepim 549K 154833 301 108 34.10 33.51 29.22 30.44

KOffice 906K 251823 308 105 30.57 31.24 34.29 32.70

Mcs 1757K 183242 216 67 28.02 34.92 25.72 33.48

Mono 297K 35085 143 66 57.32 48.33 48.4 50.58

Mozilla 3940K 1007370 835 106 18.59 23.49 18.68 50.58

Nautilus 101K 71920 332 121 19.06 19.52 19.57 20.18

NetBSD 2888K 465060 287 164 27.64 40.31 26.24 36.03

OpenBSD 1734K 140213 183 132 43.78 43.25 42.50 42.86

OpenOffice.org 5149K 129209 107 76 31.64 38.91 29.87 36.36

PostgreSQL 381K 90282 28 127 68.67 67.67 73.63 64.73

Table 1. Summary of parameters for the projects analyzed. Size is in SLOC, age (of the repository) is in months.
For indexes, 10/20 means: number of periods is 10, core teams identified as top 20% (0.2 fraction) of developers.

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commiters(by number of commits

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

(a) Absolute

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commiters(aggregated)

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

(b) Aggregated

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commitersby percentage for each time interval

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

(c) Normalized

Figure 1. Graphs for the GIMP project. A fraction of 0.2 was used for identifying core teams.

(a) 10 periods; 0.2 fraction (b) 20 periods; 0.1 fraction

Figure 2. Heat maps for the GIMP project. Fraction
provides the fraction of of top developers to identify the
core team.

same level if core groups during different time periods have
exactly the same composition) as the composition has not
changed much over time.

The identification of the code gods scenario is even more
evident in the heat maps of figure 2. Except for the diagonal
(which is, by construction, always black), the gray color

dominates the map, meaning that the composition of the
core groups over time is quite similar. The right map, with
a higher resolution, shows also the special case of the first
core groups: the upper left positions are darker, and are
surrounded by lighter ones, showing a change in generations.

The 3D maps of figure 3 provide some more detail. In
the normalized map, the lighter plateau that dominates most
of the map is a clear indicator of a stable code gods region.
Again, the beginning of the project shows a slightly different
pattern, with a different composition of the core group.

It is worth noticing that both normalized and absolute
3D maps, when projected on the XZ plane, produce the
normalized and absolute graphs. Moreover, thanks to how
the normalized map is colored, when projected on the XY
plane, the resulting 2D map should result in the heat map.
Therefore, these 3D maps in some sense include all the
information in the other graphs and maps.

In addition to all this graphical information, the indexes
shown in table 1 in the Appendix are also an indicator of a
code gods scenarios, being among the highest in the table.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commiters(by number of commits

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

(a) Absolute

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commiters(aggregated)

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

(b) Aggregated

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commitersby percentage for each time interval

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

(c) Normalized

Figure 4. Graphs for the Mozilla project. A fraction of 0.2 was used for identifying core teams.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0
 5

 10
 15

 20
 25

 30
 35

 40 0 5 10 15 20 25 30 35 40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Commits

Periods

History (periods)

Commits

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0

 5

 10

 15

 20

 25

 30

 35

 40 0
 5

 10
 15

 20
 25

 30
 35

 40

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Commits

Periods

History (periods)

Commits

Figure 3. 3D maps for the GIMP project, using quarters
as period, and 0.2 as fraction of top developers for
identifying core teams. Top is normalized map, bottom
is absolute.

4.2. Case study: Mozilla

The Mozilla project is a good example of a series of
generations scenario. Figure 4 shows the graphs for the
project. Their aspect is, at first sight, clearly different from
those of the GIMP. Curves now are very different for
each core team. They are not parallel in the aggregated
graph, neither almost coincident in the absolute one. In
the normalized graph, each team raises from a very small
fraction of contributions to a peak of about 80%-90%, and
then fades quickly (in about three years) away. In other

words, the composition of the core teams varies clearly
from period to period. There are clear indicatives of smooth
transitions between different core teams: several developers
leave or join during each period, but many stay for several
periods, ensuring smooth transitions.

Figure 5. Heat map for the Mozilla project. 10 periods
and 0.2 as fraction of top developers identified as core
team.

However, even the core teams for the last periods show
some activity during the first periods, which means that some
very active developers nowadays were already active at those
early stages of the project. Correspondingly, the first core
team also has activity during the last periods. Therefore,
the experience from the beginnings of the project is still
available in the core group (at least in the minds of the
developers active in core teams during all the life of the
project), which is another sign of smooth transitions.

In the heat map (see figure 5) wide areas are white,
and most of the activity is concentrated around the diag-
onal. Again, this shows the succession of generations. Its
smoothness can be appreciated but the two or three gray
positions around the black diagonal: each core group shows
activity before and after its peak. But additional, more subtle
information is found in this map. At about periods 5 and 6,
a clear transition is observed. Core teams tend to have more
activity either before or after those periods. Not surprisingly,
this transition happens at 2003, when the corporate support
of AOL finished and the Mozilla Foundation was founded.
The heat map shows how the composition of teams changed
more significantly around that time, although with a certain
level of smoothness.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0

 5

 10

 15

 20

 25

 30

 35 0
 5

 10
 15

 20
 25

 30
 35

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Commits

Periods

History (periods)

Commits

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0

 5

 10

 15

 20

 25

 30 5

 10

 15

 20

 25

 30

 35

 0

 5000

 10000

 15000

 20000

 25000

 30000

Commits

Periods
History (periods)

Commits

Figure 6. 3D maps for the Mozilla project, using quar-
ters as period, and 0.2 as fraction of top developers for
identifying core teams. Top is normalized map, bottom
is absolute.

This effect is also apparent in the 3D maps (figure 6,
with those wide low, dark areas (that represent low levels
of activity for the corresponding core teams). The mountain
chain aspect of those maps is a clear indication of changes
in the composition of the core teams, which happen ubiqui-
tously for this project. The normalized 3D map is specially
illustrative in this respect.

The indexes for this project (offered in table 1) are among
the lowest of all the analyzed (except for the 20/20 case).

4.3. Case study: Evolution

Evolution is a good example of a project showing both
aspects of the “code gods” and the series of generations
scenarios. Evolution started as a community-driven project
in December 1998, but was quickly adopted (by the end
of 1999) by Ximian (then a small start-up company) as a
strategic application. From that point on, Ximian developers
had a clear impact on the project. Ximian was acquired by
Novell in August 2003, with most of the team working in
Evolution also joining the new company.

Both the absolute and aggregated graphs in figure 7 show
clearly the low activity of the core team at the beginning
of the project, and the impact (in the rise of the activity) of

(a) 10 periods; 0.2 fraction (b) 20 periods; 0.1 fraction

Figure 8. Heat maps for the Evolution project. Fraction
provides the fraction of of top developers to identify the
core team.

Ximian developers joining the project. At the end of the
project, again low levels of activity are found, probably
after the spreading of Ximian developers within Novell.
These three periods also correspond to differences in the
composition of the core team. The normalized graph (also
in figure 7) shows how the first core team quickly fades out
to less than 50% of activity after less than two years, while
the last core teams rise their peak level after periods with
very little activity. Between these two ends, the periods in
the middle (specially those from 2 to 6, which correspond
to the life of Ximian as a company) are close to a code
gods scenario (parallel lines in the aggregated graph, almost
overlapping curves in the normalized graph). In summary,
we can observe an epoch of code gods, while the first and
last periods are more close to the series of generations.

Heat maps in figure 8 show the same pattern. The tran-
sition from the first periods to the Ximian epoch is smooth
but clear. The large square of gray positions (corresponding
to 6 core teams in the 10x10 map) points out the code gods
period, while the small square in the bottom right suggest the
beginning of a new code gods era. The transition to this last
square is clearly more sharp than the one at the beginning
of the project.

3D maps (see figure 9) are even more clear. The absolute
map shows a low elevation at the beginning of the project,
and a much higher mountain chain after it. Behind, some
small hills correspond to the last periods. The transitions
between the three epochs, and the differences in smoothness
are obvious.

Finally, the indexes for Evolution are closer to a code
gods case than to a series of generations one, which is
reasonable if we consider that most of the time, the former
is the more similar scenario. However, the aspects related
to the transitions are not captured by the indexes (which is
not surprising, being the index a really terse summary of a
complex pattern).

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commiters(by number of commits

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

(a) Absolute

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commiters(aggregated)

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

(b) Aggregated

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commitersby percentage for each time interval

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

(c) Normalized

Figure 7. Graphs for the Evolution project. A fraction of 0.2 was used for identifying core teams.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 10
 15

 20
 25

 30
 35

 40

 5

 10

 15

 20

 25

 30

 35

 40 0

 0.1
 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0.9
 1

Commits

Periods

History (periods)

Commits

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 10
 15

 20
 25

 30
 35

 40

 5

 10

 15

 20

 25

 30

 35

 40 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

Commits

Periods

History (periods)

Commits

Figure 9. 3D maps for the Evolution project, using quar-
ters as period, and 0.2 as fraction of top developers for
identifying core teams. Top is normalized map, bottom
is absolute.

4.4. Observations on other projects

After presenting the results of applying the methodology
to three projects, some more general observations on the 19
projects analyzed (summarized in table 1 in the appendix)
are offered in the following paragraphs.

Especially interesting is figure 10, which plots the indexes
of the different projects versus their age. It servers two
purposes: to offer a quick graphic summary of the projects,
and to show that there is no relationship between age and
index.

Showing the lack of correlation between age and index is
important, since it could seem intuitive that projects tendto
the series of generations scenario with time (given enough
time, the chances of developers leaving the project, and
others coming in, could be higher). However, we cannot
observe this behavior from the studied projects. Those with
a larger history in the sample (NetBSD and FreeBSD) show
clear differences in their indexes, and in any case they
are much more “code gods like” than others with much
shorter histories, such as Nautilus or Mozilla. It is also
important to notice that for the projects around the 120
months mark, widely varying indexes can be found, ranging
from the clear cases of series of generations (Nautilus,
Kdenetwork, Mozilla) to those of code gods (OpenBSD,
GIMP and Gnumeric). Postgres has (with difference) the
highest index. One could argue that this is due to its policy
where most commits are performed by a small group of
developers, which in many cases commits patches produced
by external contributors, but this is really no limitation to the
methodology as we are mainly studying if and how this most
active group changes over time and not specifically, although
also important, its relevance. In this regard, we could state
that the methodology is insensitive togate keepers(which
is actually a good characteristic as it is a bias that is difficult
to minimize).

Some other correlations for the indexes (versus project
size, number of developers, number of commits, etc.) have
been explored, with no clear result. With the data in our
study, it seems that the reasons for the differences in the
evolution of the core teams, from project to project, are
not related to the characteristics of the software being
developed, neither to the level of activity. Other reasons for
this differences, maybe linked to the specific policies and
procedures of the projects, remain to be found.

Fractional graphs for some of the studied projects are
also shown (see table 2 in the appendix). They have been
sorted according to their index, from Nautilus, the most close
to a series of generations scenario (top left) to Mono and
Gnumeric (clear cases of code gods). Each of them is an
interesting case, which can be analyzed from the graphs
(and the corresponding heat and 3D maps) in detail, as

Figure 10. Plot of indexes versus project age, for the projects included in the study. Indexes are calculated by
splitting project life in 10 periods, with core teams of top 0.1 of developers.

were Mozilla, GIMP and Evolution. Just as a very brief
summary, a single aspect can be highlighted: the differences
in smoothness in transitions, which can be inferred from the
different rates of ascending and descending curves before
and after reaching their peak.

To complete the general discussion of cases, figure 11
shows four plots with different methods for calculating the
index, for all the studied projects. Although of course the
sample of projects is neither large nor unbiased enough to
raise any conclusion about the distribution of indexes, some
details can be highlighted. For instance, both plots at the top
are quite similar, and the same can be said for the plots at
the bottom. Therefore, the index can be considered as almost
independent from the fraction of developers considered for
identifying the core team (at least if it is between 0.1 and
0.2).

However, the index is less immune to changes in the size
of the periods considered: the plots on the top present clear
differences with those on the bottom (and a more detailed
analysis shows not only differences in the plots, but also in
the order of projects). In fact, from an exhaustive analysis
of all the projects considered in this study, the indexes
calculated with 10 periods match better the real stories of
the projects.

5. Conclusions and further research

For the study presented in this paper, a methodology has
been designed that allows for a simple yet powerful analysis
of the evolution of the core team of libre software projects.
The methodology is quantitative, and can be automated,
only requiring that the development is performed using a

source control management system, and that the researcher
has access to the corresponding repository. Fortunately, this
is the case for a large fraction of libre software projects,
including the most relevant ones.

The methodology can be used to rank projects according
to their distance to the two extreme cases of “code gods”
and “series of generations”, using the produced indexes. But
it provides also a lot of insight on the evolution of the core
teams, by showing visually (both in graphs and maps) the
activity patterns of the developers forming the core team in
each period of the life of a project. This information can be
used to identify levels of smoothness in transitions, to detect
break points in the evolution of the core team, to understand
the differences in activity of the core team in different
periods, or to estimate unevenness in the contributions of
the most active developers when compared to the rest of
them.

In addition, we have applied the methodology to 19 rel-
evant libre software projects, and used these case examples
to validate it and illustrate some of its benefits. We also
have shown the impact of some events in the history of
specific projects on the evolution of their core team (such
as the influence of the strategy of companies in the cases of
Evolution and Mozilla).

Some factors not specifically discussed in this paper could
influence the appropriateness of the methodology. Among
them, the relevance of using the number of commits as a
proxy for the activity and importance of developers. For
validating it, we have studied some other parameters, such
as the number of changed lines, without finding meaningful
differences. However, an important problem remains open:

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commitersby percentage for each time interval

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commitersby percentage for each time interval

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commitersby percentage for each time interval

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commitersby percentage for each time interval

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commitersby percentage for each time interval

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commitersby percentage for each time interval

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

Table 2. 3x2 matrix with fractional generation plots for 6 libre software systems. From left to right and top to
bottom, they are Nautilus, Eclipse, KDE base libraries, Galeon, Gnumeric and Mono. Projects closer to the series

of generations scenario have been situated at the top, while those with code god patterns are at the bottom.

Figure 11. Plots of indexes for all the studied projects, using different numbers of periods and criteria for identifying
core teams.

to which extent other, non-coding activities (such as discus-
sion, writing of documentation, or even mediation between
developers) should be considered to better identify the core
team of developers. This should be the focus of further
research.

Another open field for research is the use of the method-
ology in classical (non-libre) software projects. The factthat
many developers in libre software projects are volunteers can
provide very interesting information about the natural be-
havior of programmers, as these developers are self-selected

(i.e., there is no traditional, mandatory task assignment as it
can be found in the commercial world). In this regard, one of
the findings that should be further researched is the amount
of time for turnover. From our limited set of projects we
have seen that, for those projects with several generations,
the time span for a generation ranges from three to five
years. This could be indicative for a programmers moving
to a different project to keep his motivation and interest
on his work high. Having developers enrolled in companies
(such as the cases of Mozilla and Evolution) and volunteer

developers in these projects could give further insight to this
question in subsequent research.

The sample of projects considered in our study is small,
which obviously opens opportunities for validating the
methodology with a larger, and more diverse collection
of projects. Of course, the larger the projects the more
interesting the findings are (since it is difficult to under-
stand all the details of such complex projects without the
help of methodologies and tools). But even in the case of
small projects some interesting results could be quickly and
automatically obtained.

In any case, from our work we can conclude that the
study of the behavior of human resources in libre software
projects and in software engineering in general, and the
relationship between its join/leave patterns and the evolution
of the project, is a field worth to explore. This paper tries
to be a first step in this direction, focused on studying
its dynamics, and on finding how projects cope with the
changes caused by it.

Acknowledgment

This work has been funded in part by the European
Commission, through projects FLOSSMetrics, FP6-IST-5-
033982, QUALOSS, FP6-IST-5-033547, and Qualipso, FP6-
IST-034763.

References

[1] B. W. Boehm, Ed.,Software risk management. Piscataway,
NJ, USA: IEEE Press, 1989.

[2] D. M. Germán, “The GNOME project: a case study of open
source, global software development,”Journal of Software
Process: Improvement and Practice, vol. 8, no. 4, pp. 201–
215, 2004.

[3] K. Crowston and J. Howison, “The social structure of free and
open source software development,”First Monday, vol. 10,
no. 2, February 2005.

[4] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case
studies of Open Source software development: Apache and
Mozilla,” ACM Transactions on Software Engineering and
Methodology, vol. 11, no. 3, pp. 309–346, 2002.

[5] T. T. Dinh-Trong and J. M. Bieman, “The FreeBSD project:
A replication case study of Open Source development,”IEEE
Transactions on Software Engineering, vol. 31, no. 6, pp.
481–494, June 2005.

[6] C. Jensen and W. Scacchi, “Modeling recruitment and role
migration processes in OSSD projects,” inProceedings of 6th
International Workshop on Software Process Simulation and
Modeling, St. Louis, May 2005.

[7] G. Robles, J. M. Gonźalez-Barahona, and M. Michlmayr,
“Evolution of volunteer participation in libre software
projects: evidence from Debian,” inProceedings of the 1st
International Conference on Open Source Systems, Genoa,
Italy, July 2005, pp. 100–107.

[8] G. Robles and J. M. González-Barahona, “Contributor
turnover in libre software projects,” inOpen Source Systems
Conference, June 8-10, 2006, Como, Italy, 2006, pp. 273–286.

[9] G. Robles, S. Koch, and J. M. González-Barahona, “Remote
analysis and measurement of libre software systems by means
of the CVSAnalY tool,” in Proceedings of the 2nd ICSE
Workshop on Remote Analysis and Measurement of Software
Systems (RAMSS), Edinburgh, Scotland, UK, 2004, pp. 51–
56.

[10] G. Robles, J. M. Gonźalez-Barahona, and J.-J. Merelo, “Be-
yond executable source code: The importance of other source
artifacts in software development (a case study),”Journal
of Systems and Software, vol. 80, no. 9, pp. 1233–1248,
September 2006.

[11] R. A. Ghosh and V. V. Prakash, “The orbiten free software
survey,” First Monday, vol. 5, no. 7, May 2000.

[12] S. Koch and G. Schneider, “Effort, cooperation and co-
ordination in an open source software project: GNOME,”
Information Systems Journal, vol. 12, no. 1, pp. 27–42, 2002.

