
Co-Change Visualization
Applied to PostgreSQL and ArgoUML∗

(MSR Challenge Report)

Dirk Beyer
EPFL, Switzerland

ABSTRACT
Co-change visualization is a method to recover the subsys-
tem structure of a software system from the version history,
based on common changes and visual clustering. This pa-
per presents the results of applying the tool CCVisu, which
implements co-change visualization, to the two open-source
software systems PostgreSQL and ArgoUML. The input
of the method is the co-change graph, which can be easily
extracted by CCVisu from a Cvs version repository. The
output is a graph layout that places software artifacts that
were often commonly changed at close positions, and arti-
facts that were rarely co-changed at distant positions. This
property of the layout is due to the clustering property of
the underlying energy model, which evaluates the quality
of a produced layout. The layout can be displayed on the
screen, or saved to a file in SVG or VRML format.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement
— Restructuring, reverse engineering, and reengineering

General Terms: Design

Keywords: Software visualization, software clustering,
software structure analysis, force-directed graph layout

1. METHOD
In reverse engineering and reengineering, we often want

to extract a description of the system structure from avail-
able resources. Even if a structure description (often ‘as-
designed’) is available, it can be useful to complement
it by an extracted description of the ‘as-build’ structure.
Co-change visualization is a method that extracts such a
description, and aims to help in reverse engineering and
re-engineering activities like understanding the structure of
the system, change impact and change propagation analysis,
coupling analysis, architecture and design quality analysis.
Approach and tool used. The approach of co-change vi-
sualization is introduced in [2], and implemented in the tool
CCVisu [1]. It requires as input the version history, which
is almost always available, and automatically produces a vi-
sualization that groups together components that were often
changed together, and separates independent components.
Input data. For the two example systems, we take as input
the version log information, as (in case of Cvs) obtained by

∗This research was supported in part by the MICS NCCR
of the SNSF.

Copyright is held by the author/owner.
MSR’06,May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

applying the command cvs log -Nb (only default branch,
ignore tags). We consider the whole development period
from project start to Feb. 8, 2006 (extraction date). From
this input, we extract the co-change graph on file level. The
nodes in the (bipartite, undirected) co-change graph are files
and commits. An edge between a file node f and a commit
node c exists if file f was changed by commit c. The table
below presents the characteristics of the graphs. For the
details of the method and related work we refer to [2, 1].

System Files Commits Changes Log file
PostgreSQL 4,125 20,500 88,468 17 MB
ArgoUML 10,142 10,137 57,091 16 MB

2. RESULTS AND EVALUATION
The commit nodes and the edges are omitted in the vi-

sualizations for readability. The file nodes were drawn in
different colors, to compare the grouping suggested by the
layout with an authoritative decomposition, according to
documentation. The area of a circle is proportional to the
number of changes of the file. Each layout was computed
within 5 min on a 1.7 GHz Pentium M laptop, using only 200
iterations of the minimizer. The layouts in SVG or VRML
format provide (interactively) the file names as annotation
and basic zoom features. The figures in this paper are anno-
tated with the names of the subsystems (gray boxes). The
layouts in SVG and VRML format, the Cvs log files, and the
co-change graphs in RSF, are available on the supplemen-
tary web page at http://mtc.epfl.ch/∼beyer/ccvisu msr.
PostgreSQL. In the authoritative decomposition we con-
sidered 12 subsystems of PostgreSQL, and assigned a color
to each subsystem: executor (red), optimizer (blue), parser
(cyan), storage (magenta), catalog/commands/nodes (yel-
low), access (dark cyan), port (olive-green), regression test
(brown), interfaces (light blue), include (light green), utili-
ties (light gray), and documentation (green).

We can use the colors to evaluate if CCVisu has posi-
tioned the 4,125 files in groups in agreement with the au-
thoritative decomposition. Figure 1 clearly separates the
main clusters of the documentation (top right, largest cir-
cle at bottom is TODO file), the interfaces for libpg (center
right) and ecpg (bottom right), and the regression test files
(top left) from the backend files (center left), and from the
include and utilities (center). To get more insights into the
backend files on the left (here not separated), we need to
‘zoom’ into this part by restricting the co-change graph to
the backend, and computing a new layout for this subgraph.

Figure 2 visualizes the backend only. The subsystems that
formed the large group on the left in Fig. 1 are now better

165



Figure 1: PostgreSQL

Figure 2: PostgreSQL — backend only
separated. The layout separates from the rest the executor,
port, and access subsystems (bottom). It puts the optimizer,
nodes, and parser into one group (right), but does not merge
the three groups, which makes sense according to the author-
itative decomposition. The commands, catalog, and storage
files (left) are not separated but also not merged. The gray
nodes blur the otherwise clear picture: they represent the
utility files, which are used by all subsystems, and therefore
they are placed correctly by the method. The three groups
containing files in every color at the top are three collections
of makefiles — since they necessarily change together, they
are placed together although they are assigned to different
subsystems in the authoritative decomposition.
ArgoUML. The authoritative decomposition divides the
files into 9 parts: old development files (uci in green, uci-gef
in brown), documentation (yellow), test files (blue), cogni-
tive (cyan), diagrams (magenta), UI (dark cyan), UML-UI
(red), and model (light blue). The files that could not be as-
signed to any subsystem are drawn in light gray (consisting
of utilities, makefiles, configuration files, etc.).

The placement of the 10,142 files of ArgoUML is shown
in Fig. 3. The old development branch is clearly separated
(top right). Also, the www documentation files are shown

Figure 3: ArgoUML

as several clusters (right side), and some implementation-
dependent parts of the documentation (e.g., cookbook, con-
fig) are placed close to the corresponding source files. Fur-
thermore, the test files (top left) are nicely separated from
the rest. The files for the UML-UI (almost completely) form
the red clusters at the bottom, and also the files of the ‘cog-
nitive’ subsystem are separated. The cluster with the most
files of the UI subsystem is the explorer, which is separated
from the rest on the very left (close to the manual cluster).

The diagrams and model files are spread over the pic-
ture. A restriction of the visualization to the source files, as
done for PostgreSQL, leads to a picture (not shown here)
where the diagrams subsystem is separated, but the model
subsystem does still not form a cluster because this sub-
system is responsible for interfacing and exchanging data.
For example, the largest circle (light blue) is the class Mod-
elFacade. The visualization allows the following interpreta-
tion: the subsystems for UML-UI, cognitive, diagrams, and
the explorer component of the UI subsystem are reasonably
loosely coupled, and the rest is dependent on many other
components (expected to be necessary for UI, models, parts
of diagrams). We omit a more detailed discussion for space.
Conclusion. The resulting visualization provides the soft-
ware engineer with valuable information, e.g., for reverse
engineering it reveals the subsystem structure, for program
understanding it illustrates which artifacts depend on each
other, and for quality assessment it can be used to highlight
unstable parts of the system. That the co-change graph is
indeed a good prediction model can be shown by comparing
two layouts that result from splitting the co-change data
into a (virtual) past and future. The method relates not
only source code files, but also, e.g., SQL query files, test
files, and documentation files, to program source code files.

3. REFERENCES
[1] D. Beyer. Co-change visualization. In Proc. ICSM’05,

Industrial and Tool volume, pages 89–92, 2005.
[2] D. Beyer and A. Noack. Clustering software artifacts

based on frequent common changes. In Proc. IWPC,
pages 259–268. IEEE, 2005.

166


