
Using Evolutionary Annotations from Change Logs to
Enhance Program Comprehension

Daniel M German
Dept. of Computer Science

University of Victoria
dmg@uvic.ca

Peter C. Rigby
Dept. of Computer Science

University of Victoria
pcr@uvic.ca

Margaret-Anne Storey
Dept. of Computer Science

University of Victoria
mstorey@uvic.ca

ABSTRACT
Evolutionary annotations are descriptions of how source code evolves
over time. Typical source comments, given their static nature, are
usually inadequate for describing how a program has evolved over
time; instead, source code comments are typically a description of
what a program currently does. We propose the use of evolution-
ary annotations as a way of describing the rationale behind changes
applied to a given program (for example ”These lines were added
to ...”). Evolutionary annotations can assist a software developer in
the understanding of how a given portion of source code works by
showing him how the source has evolved into its current form.
In this paper we describe a method to automatically create evolu-

tionary annotations from change logs, defect tracking systems and
mailing lists. We describe the design of a prototype for Eclipse that
can filter and present these annotations alongside their correspond-
ing source code and in workbench views. We use Apache as a test
case to demonstrate the feasibility of this approach.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Documentation

Keywords
Software evolution, mining software repositories, evolutionary an-
notations, version control

1. INTRODUCTION
It is undeniable that the most desirable property of source code

is that it performs that task it is intended for, and it is also a well-
known problem that source code lacks proper software documen-
tation (documentation that describes how a system is implemented
including source code comments). While some developers argue

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06,May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

that source code should be self explanatory, it is widely acknowl-
edged that software documentation is an important source of infor-
mation that assists developers during comprehension and mainte-
nance [6]. The primary goal of software documentation is to de-
scribe what the system does currently, and how it is implemented
currently .
As a software project evolves, a wealth of information is created

(some automatically, some manually) that describes how a software
system is evolving. We have previously demonstrated that histori-
cal records can be used to successfully reconstruct how a software
system evolves [2]. Our hypothesis is that this information, com-
bined with software documentation, can improve comprehension
and maintenance too.
In this paper, we propose the concept of evolutionary annota-

tions, documentation that describes how a software system is evolv-
ing, and a method for their automatic retrieval from historical soft-
ware development records such as version control logs, mailing list
discussions, defect tracking databases. We also describe some of
the challenges of extracting this information and correlating it with
the source code. We conclude with a description of a prototype for
the Eclipse Java development environment 1 that displays evolu-
tionary annotations related to the source code.

2. EVOLUTIONARY ANNOTATIONS
System documentation evolves, whether it is internal or external

to the code. Ideally documentation should evolve in tandem with
the source code. One of the important goals behind software docu-
mentation is to explain what the current version of the source code
does. What it lacks typically is a record of how the source code
evolves, and the decisions that led to its current form.
We define evolutionary annotations (EAs) as documentation that

explains the change or evolution of a software system rather than
its current role. EAs reside in various places:

• Change logs. Files that describe what is changed at any given
point (sometimes this information is embedded as an ever-
growing comment at the top of the file). It typically contains
a timestamp and a brief description of the change.

• Configuration management. It can explain the entire prove-
nance of a change: who requested it, why, who implemented,
who approved it, etc.

• Version control system. It keeps track of how source code
changes: who performed the change, what was changed and
when. Its logs usually contain an explanation of the rationale
for the change. Sometimes version control systems are part

1See www.eclipse.org

159

of a configuration management system, but more frequently
version control systems exist on their own.

• Defect tracking system. It might explain the bug or feature
that the change fixed or implemented: who found it, who
fixed, test cases, explanation of the fix, etc.

• Mailing lists and newsgroups messages. Email and news-
groups postings that discuss or describe how the system evolves.
The scope of these messages might vary, as some might de-
scribe how the entire system is evolving, while others might
be very specific to a given change.

• Records of code reviews. The rationale behind a change
that results from a code review might be very useful in un-
derstanding why a given change was performed in a certain
manner.

• TODO tasks (such as the ones described in [7]). Following
their evolution could provide valuable information about how
changes are requested and who completes them.

• Comments in the source code itself. Some comments are
indeed a description of how the source has changed.

In some instances a change in documentation might trigger the
creation of an EA. For example the removal of a TODO task which
might, but not necessarily, correspond to the completion of a task;
or the removal of a source code comment that might imply a major
change in the source code around it (for instance, an old algorithm
is no longer used and the source code comment is no longer appli-
cable).
If documentation that explains what a program does is seen as

“vertical” (contained within a single file), evolutionary annotations
are then “horizontal” (span at least two versions of a file), i.e. they
are orthogonal and they complement each other. Figure 1 demon-
strates how evolutionary annotations explain how source code files
change between versions.

Bugzilla
Entry

 if (IsTextFile(var36)) {
 if (StringtoFullPath(&scriptFileName,var36) != 0) {
 PrintError("Syntax error: Not a valid pathname");
 return(-1);
 }

Source code
and comments

 if (IsTextFile(var36)) {
 if (StringtoFullPath(&scriptFileName,var36) != 0) {
 PrintError("Syntax error: Not a valid pathname");
 return(-1);
 }

Source code

 if (IsTextFile(var36) && not tested) {
 return -1;
 }

Source code
and commentsChange

 if (IsTextFile(var36)) {
 if (StringtoFullPath(&scriptFileName,var36) != 0) {
 PrintError("Syntax error: Not a valid pathname");
 return(-1);
 }

Source code

 if (scriptFileName.name[0] == 0) {
 char *temp;
 ...
}

Source code
and commentsChange

Version i Version i+1Version i-1

Mail messages and
newsgroup postings

Discussion related to
the changes

ChangeLog

VC log

ChangeLog

VC log
Describe
Change

Describe
Change

Describe
Change

Bugzilla
Entry

Figure 1: Evolutionary annotations are “horizontal” while
source code comments are vertical.

Evolutionary annotations, like any other type of historical infor-
mation, will grow as time passes by. It is necessary to present them
to the reader in such a way that they are meaningful. EAs need to
be filtered and ranked in such a way that only the most meaningful
are presented to the reader. The definition of “most meaningful”
might also change depending on the task at hand. A simple method
to filter EAs can be based on their attributes. EAs can have the
following inherent attributes:

• Type. This classification corresponds to the source of the an-
notation: emails, ChangeLogs, defect tracking, source code
comments, etc.

• Scope. Evolutionary annotations, like the source code itself,
have scope. Some describe changes at the global level (e.g.
one might explain why the architecture of a system changed)
while others might be at the line level (“this if statement was
added to fix bug number...”). In some cases, the scope of a
EA might not be related to a scope in a programming lan-
guage sense (i.e. a EA that relates a global variable with
some lines of code in several functions); thus, the annota-
tions of some EA might not have an equivalent source code
scope.

• Timestamp. When was the annotation created.

• Author. Who created it.

• Version/Revision. Indicates which version of the source code
the EA correspond to.

• Community/project defined. Evolutionary annotations can
be further refined with the use of keywords or other special
fields that describe them. They can be enhanced according
to the needs of the project. For example, developers can rank
them according to importance, or can add keywords that are
meaningful to their application domain. Ideally these refine-
ments will be defined and created in such a manner that they
improve query and visualization mechanisms.

• Type of change. EAs should also be labeled according to
the type of source code they document (such as defect fixes,
structural changes, new functionality, refactoring etc).

• Other EAs. Further annotations can be attached to a given
EA that might provide a more in-depth explanation of the
change.

Some of these attributes–such as author, timestamp and type–
are easy to compute. Others, however, are not that simple. It will
be difficult, for example, to automatically determine the scope of
a comment. One potential solution is to allow the developers to
further annotate EAs with their scope, either during their creation,
or when they are being explored.
Automatically ranking annotations according to their relevance

for the task the reader needs to complete, is an open problem and
we expect to conduct further research in this area. The notion of
decay should also be supported. As the code evolves, some, but not
all EAs will lose their importance. We believe it will be difficult
to automatically determine the rate at which a given EA should
decay. Any system that presents EAs to the user should be able to
take advantage of these properties in such a manner that the user
can order them and filter them to meet their information needs.

160

3. EXTRACTINGANDCROSS-REFERENC-
ING EVOLUTIONARY ANNOTATIONS

One of the main challenges in the creation and maintenance of
any type of documentation is to convince developers to create it,
and then to keep it up to date.
EAs have an advantage over traditional documentation in that

they do not need require user interaction to be kept up-to-date. Like
any historical record, they need to be created when such an event
happens; after that they might never change again (except, as we
mentioned above, by adding extra annotations to them). Therefore
the challenge is to get developers to create them in the first place.
Some evolutionary annotations are created automatically as a re-

sult of a change. For instance, if several lines of code in two differ-
ent functions are committed at the same time, an evolutionary anno-
tation is created that links them to each other, and with their author.
This annotation can be further enhanced by its author by providing
an expressive version control log description. Many evolutionary
annotations are, therefore, created by developers as a result of their
daily activities.
Since open source communities generally interact in an asyn-

chronous, distributed manner, records of all changes and discus-
sions are captured and stored. These records serve as the raw data
for the creation of evolutionary annotations (EAs are the links be-
tween these records). In our research into the evolution of open
source projects we have found that developers of mature open source
projects value these records and ensure, often through policy, that
these records be maintained; they form what Cubranic calls the
“community memory” [1] of the project. We have observed that:

• ChangeLogs are usually updated with a change. The Free
Software Foundation requires all its projects to have a Change-
Log file. In those projects that have them, we have discov-
ered that they are almost always updated [3].

• Version Control logs tend to have large, meaningful explana-
tions. In the project Evolution, the average size of a log is
306 bytes, in Apache 1.3 it is 160 bytes, and in Postgresql it
is 160 bytes, to cite just a few.

• Email is seen as an important source of discussion about
the way software evolves. For example, the Apache HTTPd
server conducts code reviews on many of its patches (some
pre-commit and some after they have been committed). The
discussion is often lively with reviewers providing detailed
explanations as to why a certain approach is good or bad [5].
In contrast, version control logs and comments are shorter,
usually omitting discussion of less satisfactory solutions. Hav-
ing a link to this discussion will likely save the maintainer
many hours in code comprehension and avoids time wasted
to re-implementing known poor solutions. In the case of
Apache code review information is archived, but (to our knowl-
edge) it has not been cross-referenced or linked to the source
code. Without this link it is difficult to to know, for a partic-
ular function/file/line of code, what discussion has occurred.

• Defect tracking databases, such as Bugzilla, are frequently
found in large open source projects. They provide a valuable
source of information regarding defects (and their fixes) and
feature request.

Some data sources that have a well defined format, such as ver-
sion control logs and ChangeLogs, are easy to correlate to lines of
affected code. Correlating Bugzilla and source code is more dif-
ficult. It usually involves textual analysis of the description of the

version control log. For example in [3], we describe regular expres-
sions that were useful in the extraction of Bugzilla numbers from
CVS commit logs. Correlating email messages is even more diffi-
cult. For Apache, we have been successful in creating automated
and manual heuristics that help in the correlation of messages dis-
cussing code reviews [5]. For example, code reviews often involve
diffs that contain the version in the repository against which the diff
was made. However, general email discussions are much more dif-
ficult to correlate. Problems include determining the context of the
discussion, reconstructing message threads, and resolving names
to email addresses. We expect that different projects will require
variants of our heuristics and new heuristics to correlate email mes-
sages to source code.

4. INTEGRATING EVOLUTIONARY
ANNOTATIONS INTO ECLIPSE

The proposed architecture consists of a database that contains all
the evolutionary annotations that are correlated to the source code.
As development artifacts are changed (e.g., source code changes
are committed, email messages are sent, defects are reported, etc),
the database is updated. A web service links the database and
Eclipse. Eclipse requests annotations based on where the developer
is working (e.g., a method, a class, a set of files, a project) and up-
dates the user’s perspective. Eclipse provides a useful framework
for presenting, through views and gutter annotations, the EAs to
developers. The plug-in architecture of Eclipse allowed us to cre-
ate a prototype that integrates EAs into a environment that already
contains useful development tools and supports many programming
languages and hardware and software platforms.
The screenshot from the EA prototype is shown in Figure 2.

The screenshot is based on EAs related to the Apache HTTPd 1.3
source. By selecting the section of code that needs to be under-
stood, the related EAs are shown in the Eclipse EA view. In this
case a diff was also performed since evolution is often easier to
understand when one can see the changes between versions. The
oldest EA pertains to a bug reported by a non-core developer. The
next EA is an email that contains the review comments and votes
of two independent reviewers of the proposed patch. The next EA
is a subversion commit log explaining what has been changed. The
most recent EA is an email indicating that new problems have been
discovered in the code.
In Figure 2, the EAs have been filtered for a particular section of

code. The filters could be relaxed to include an entire file or project.
Gutter annotations (not shown in the screenshot) are used in a file
to indicate specific section of code that contain annotations. Global
EAs are indicated as markup on file and project icons. It is also
possible to filter EAs based on any of the attributes. For example, it
is possible to restrict EAs to a particular version, type (e.g., bugs),
and author. This second type of filtering is important because most
sections of the code will have at least a commit log associated with
them making the guttered annotations cluttered. We are also con-
sidering using more advanced filtering techniques, such as allowing
users to bookmark or tag multiple sections of code and then base
our EA sets on these selections. EAs could complement degree of
interest tools like Mylar [4]. Mylar hides files that are not related to
the current development task. EAs can use the same model to show
users how the code evolved to the current state, helping to inform
future changes.

5. FURTHERWORK
This paper describes a research project in progress. One funda-

mental question about EAs that needs to be addressed is how useful

161

Figure 2: Evolutionary annotations related to a section of highlighted source code.

would they be to assist during program comprehension and main-
tenance?
Their usefulness will depend, for a given project, on how accu-

rate they are. In other words, we first need methods to accurately
evaluate the quality and quantity of evolutionary annotations and
how well they can be cross-referenced to the source code they refer
to. We also need empirical studies that extract, study and evaluate
EAs for a variety of projects.
As with any other type of documentation, some EAs will be of

high quality, while others will provide very little insight. Some
projects will have a vast number, while others will have very few.
Furthermore, from the point of view of a given developer trying
to understand the evolution of a given part of the code, what re-
ally matters is the quality and number of the annotations to that
particular part of the system. Experiments intended to evaluate the
usefulness of EAs need to take these factors into account.
Tool support is also needed. It is necessary to create methods

and heuristics for the extraction and correlation of evolutionary an-
notations, in particular for email discussions. It is also necessary to
create methods to rank, filter and present evolutionary annotations
so they do not overwhelm the developer.
The ideas underlying evolutionary annotations pose many inter-

esting questions for future work and for discussion.

6. REFERENCES
[1] D. Cubranić, G. C. Murphy, J. Singer, and K. S. Booth.

Learning from project history: A case study for software
development. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work, pages 82–91, 2004.

[2] D. M. German. Using software trails to reconstruct the
evolution of software. Journal of Software Maintenance and
Evolution: Research and Practice, 16(6):367–384, 2004.

[3] D. M. German. An empirical study of fine-grained software
modifications. Journal of Empirical Software Engineering,
2005. Accepted for publication Sept 25, 2005, to appear in the
Special Issue of Best Papers of ICSM 2004.

[4] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest
model for ides. In AOSD ’05: Proceedings of the 4th
international conference on Aspect-oriented software
development, pages 159–168, New York, NY, USA, 2005.
ACM Press.

[5] P. Rigby and D. M. German. A preliminary examination of
code review processes in open source projects. Technical
Report DCS -305-IR, University of Victoria, 2006.

[6] E. Tryggeseth. Report from an Experiment: Impact of
Documentation on Maintenance. Empirical Software
Engineering, 2(2):201–207, 1997.

[7] A. T. T. Ying, J. L. Wright, and S. Abrams. Source code that
talks: an exploration of eclipse task comments and their
implication to repository mining. In MSR ’05: Proceedings of
the 2005 international workshop on Mining software
repositories, pages 1–5, New York, NY, USA, 2005. ACM
Press.

162

