Open-Source Development Processes and Tools

Cornelia Boldyreff, Janet Lavery, David Nutter, and Stephen Rank,
Department of Computer Science,
University of Durham
Stephen.Rank@durham.ac.uk

Abstract

Open-source software projects rarely have high-
quality process support. Any tools which are used to
control workflow in a project are usually fixed to a
particular process, which is often not made explicit.

In order to improve the support for process modelling,
monitoring, and control, it is necessary to use tools which
allow the creation and manipulation of process models.
This paper describes the GENESIS platform, an open-
source lightweight process-neutral toolkit which supports
distributed collaboration over the internet for software
engineering. The capabilities provided by the platform
make it suitable for adoption by open-source projects.
Many open-source projects have little or no automated
process support. The GENESIS project offers these
capabilities in a form which is ideal for adoption by such
projects.

1. Introduction

This position paper describes aspects of some open-
source development processes, and identifies ways in
which the GENESIS platform could be used to assist
open-source development.

The GENESIS platform is an EU-funded open-source
process-aware toolkit to support distributed software
development. Although it is initially targeted at
development within commercial organisations, it can be
useful to open-source software development. The
GENESIS platform is described in section 4.

2. Open-Source Development: Tool Support

There are two kinds of tool used in software
development: those which support the product (editors,
compilers, build tools, efc.) and those which support the
process (such as configuration management tools). In
open-source software development, most tool use is in

15

product development, or at the less-sophisticated end of
the process-support spectrum (e.g., CVS). Process
support is usually limited to informal use of
communication tools (such as email and IRC clients).
There is rarely any maintenance of relationships between
informal knowledge (which is often the largest and most
useful body of knowledge about a project) and the
components which make up the software. This leads to
inefficiency, as developers (or others) who wish to
discover information about particular components have to
search mailing list archives (for example) in order to
discover information.

3. Open-Source Development Processes

Much open-source software development is carried out
by small groups with a single leader [2]. In larger
projects, a “core group' or official organisation (such as
the Apache Software Foundation) usually takes the place
of the leader, performing the same tasks [2].

Open-source development usually has very little
formalised process modelling or support. Some projects
use issue-tracking software to provide limited support for
their evolution processes, but very few have any explicit
model of their design or development activities. There are
many reasons for this, including the perceived overhead
of introducing and enforcing formal models of the
software process, and the perceived inflexibility of such
models [3].

Coordination and discussion in open-source projects
usually takes place using communication tools such as
email or IRC [6]. When logs of messages are kept, they
are usually kept in separate repositories, and are not
organised in a way that makes them easily available to the
user. For example, mailing list archives are usually
available over the web, but with no links from software
components to relevant postings. Open-source software is
often lacking in design documentation. In this case,
mailing list archives are the only record of design
decisions. If these archives were readily related to the
components which they describe (and, perhaps more

usefully, vice versa), a developer wishing to understand
the design of a component could more easily discover the
rationale for decisions.

There is very little formalised software process support
used in open-source software projects. Tools such as
Bugzilla provide some support for the process model
implicitly contained within them [4], but do not provide
capabilities to modify the process model, or to use a
different model entirely. Neither do they provide a
mechanism for supporting informal documentation.

All projects operate under some form of *government'.
For example, the Debian project has a project leader,
elected by the developers, while many projects have a
self-selected leader (usually the person who initiated the
project). Leaders have some form of control of the
development process, including delegation (to
volunteers), the ability to make rulings on (for example)
design decisions, and the use of a ‘casting vote' in
disputes. There is frequently no tool support for this
process, nor any way of monitoring the delegation of
tasks.

4. The GENESIS Platform

The GENESIS project is creating an open-source
process-aware platform to support distributed cooperative
software development [5,1]. The architecture of the
platform is shown in figure 1. The GENESIS platform's
process-modelling component GOSPEL allows project
managers to model their organisation's existing processes.
In the context of an open-source project, the ‘project
manager' is the leader or core group. Within the
GENESIS platform, it is possible to assign work units (as
small as fixing a simple bug, or as large as designing the
entire system) to individuals or to groups of people. The
resource management system is used by GOSPEL to
manage the allocation of people to workflow items.

Coordination between tasks is at the level of artefacts:
each task in a process model has a set of input artefacts
(which must be supplied before the task can be begun)
and a set of output artefacts (which are supplied to later
tasks). Artefacts can consist of any item of data which can
be represented in a file, and are stored in the repository,
known as OSCAR, whose architecture is shown in figure
2. OSCAR provides superior SCM capabilities, allowing
the maintenance of relationships between artefacts, which
provides for traceability in the software development
process.

16

Presentation Layer
Process

CENESTS Dyedinits Work N Ariefact Medrics Convunisical S
Manager E';Iu:‘lm Chisnd Clint Chient Client

| Fezoure Management System

Sorvices Layor

4 A
[y
l; ?‘Eﬁml Dotilieat ion Medric Commurdeation l[:
| Ergiee: Enginp .
System | Engine

| Artefact Manageinent Systetn

| B TR B

Dava Layer

o — ———— e,

AN i : fo i
Resouges Prucess Ariefart
Rnpnﬂml:f_‘ _ Repositary __ Repositnry |
— — = . -

| Agrois

Figure 1: The GENESIS Platform Architecture

The outside wogld

3 PRESENTATION LAYER

Transformation
(E.G. XSLT)

Search Interface

Arrefact
| |_Dispatcher

METRICS

| INDEXING

Indexing and
Search Engine

Metadata Extractor
—

Metadata abstract

Artefact abstract
dara store

data store
T

L DBMS and
ransacnons

‘Esk)ﬁcrﬂge B
‘ C_ o7
| STORAGE , /—\LQ/

Figure 2: The Architecture of OSCAR

The GENESIS platform is distributed: each site (which
can have as few as one developer) has an instantiation of
the process manager and the artefact manager, which may
be simply stubs to allow remote access to another site's
components. In this way, the distribution of GENESIS is
flexible, and can be configured to suit the nature and size
of each site. This distribution is shown in figure 3.

GLOBAL NODE
\.
Q |
OSCAR
O |]
| I 1. RMS
Global Process T GOSPEL
Manager LIJ
<<Agent>>
LOCAL NODE
— ~
OSCAR S O
* T
T RMS _—
- |
GOSPEL N
Local Process Develope:

Manager

Figure 3: GENESIS Site Deployment

As the GENESIS platform is process-aware, it can be
adapted to support whatever process is in use by a
project, rather than enforcing a process model in place of
an already existing method. This allows for low-impact
introduction of the system into a project. The component
nature of the platform allows progressive introduction of
the platform: OSCAR can be introduced initially, in place
of the configuration management system (such as CVS,
from which data can be extracted) which is already in use.
The use of OSCAR can later be supplemented with the
other components, in order to use the facilities provided
by them.

The use of the GENESIS platform provides a level of
visibility of the software process that is not available to
projects which do not use a process-enactment tool. This
is useful both in planning and in monitoring project
progress. This provision of visibility allows the project
leaders greater control over and knowledge of the state of
the project. The project manager (or ‘key developer', or
‘maintainer’) can use the process management tool to
record delegation. It is possible for each process element
(a step in the workflow) to be delegated to a team, with
one member of the team holding overall responsibility
(only the leader can make the final commit of the output
artefacts). This allows sophisticated multi-level
decomposition of the workflow.

The repository is designed to store both formal
software artefacts (such as code, design documents, test
cases, process models, efc.) and informal material. The
informal material can take the form of annotations to

17

artefacts (added by the user) or can be mailing list
archives, IRC logs, and so on. Each item can be linked to
the artefact(s) to which it is related, in order to provide
connections between formal and informal artefacts. This
linking provides a capacity for informal documentation of
(for example) software components. When formal
documentation is missing from open-source projects,
informal documentation is the next-best alternative.
Currently there are no links between the artefacts and the
informal documentation describing them (mailing list
archives have to be searched, for example), which results
in a loss of efficiency. There is a danger of “information
overload'; if there are many discussions relating to an
artefact, there will be too much material to read. If this
occurs, a filtering mechanism can be applied, or a set of
intermediate artefacts used to classify the informal
artefacts. For an example of this concept, see figure 4.

Mame: Discussions ..

Ommer: ServerGroup

L -
Crwner: Design Team 7 5

/ M,
/ \
/ \
/ \
/ Y
Rk § /
Nese | Nowe n /
/
/
/

Figure 4: Using intermediate artefacts to
classify annotations

Currently, the GENESIS platform 1is under
development, nearing the release of the first stable
version. Once this version has been released, it will be
adopted by the project, and will be used in pilot studies in
the two participating companies. The results of these
studies, and the experiences of the project members, will
be used to evaluate the platform and to motivate future
development.

1 . MName: Bug Repons
Mame: Design Docs

Owner: Bug trackers
- .

5 Conclusion

This paper has outlined some reasons for the lack of
explicit process support in many open-source projects,
and has shown how the GENESIS platform can be
introduced into an open-source project, and the benefits
which this will bring to such a project. The GENESIS
platform is intended to be simple to install and impose as
little overhead on the project as possible. Because of this,
it will be suitable for adoption by projects which already
have artefact repositories but no process support.

Introducing the components of the GENESIS platform
into an open-source project will, we claim, increase the
productivity of the project by decreasing the management
overheads of the project leaders, and by allowing the
creation of a richer representation of the artefacts created

and used by the project members. Once the project has
reached a stable and usable condition, it will be
interesting to carry out case studies of both open-source
and commercial development using the GENESIS
platform. An initial case-study will be provided by
hosting the development of the GENESIS project using
the GENESIS platform.

Bibliography

[1] C. Boldyreff, = D.Nutter, and S. Rank.
“Active artefact management for distributed software
engineering”. In Workshop on Cooperative Supports for
Distributed Software Engineering Processes, Proceedings
of COMPSAC2002, pages 1081-1086. IEEE, August
2002.

18

[2] J. Feller and B. Fitzgerald. Understanding Open
Source Software Development. Pearson Education, 2002.

[3] E. S. Raymond. The Cathedral and the Bazaar:
Musing on Linux and Open Source by an Accidental
Revolutionary.

O'Reilly and Associates, 1999.

[4] C.R. Reis and R.P. de Mattos Fortes.
“An overview of the software engineering process and
tools in the Mozilla project”. In Proceedings of the Open
Source Software Development Workshop, pages 155-175,
Newcastle, UK, Feb. 2002.

[5] P. Ritrovato. “Generalised enviroment for process
management in cooperative software engineering”.
In Workshop on Cooperative Supports for Distributed
Software Engineerng Processes, Proceedings of
COMPSAC2002, pages 1049-1053. IEEE, August 2002.

[6] J.Sandred. Managing Open Source Projects.
Wiley, 2001.

