Open Source Methodologies and Mission Critical Software
Development

Michael P. Voightmann
Massachusetts Institute of Technology
vmann@mit.edu

Abstract

Reliable, robust software is vital to every
successful space mission. This is particularly
true with the large risks, complexities and costs
involved. Now more than ever, mission software
must be well planned, heavily tested and
thoroughly debugged. At the same time,
priceless expertise is lost every year, and has
proven to be difficult to recoup. We believe
taking a look at open source software (OSS)
methodologies may provide insight into
improving the development of critical software.

Three key areas of success in open source
software that are directly applicable to mission
software, are: (1) broad peer review, (2) code
releases early and often, and (3) an excellent
training ground. The open source movement has
shown that a large group of dispersed
developers can create large, reliable systems.
The key methods that propel the open source
movement can be applied to improving mission
critical software.

1. Introduction

There is a huge responsibility and need to
produce “ultra-reliable” software. But this goal
is in direct conflict with the increasing
complexity, size, longevity, and cost of software
[26]. This trend doesn’t appear to be slowing
down. In response to the increasing costs and
complexity, organizations are attempting to reuse
large amounts of software. This can have
disastrous effects, as seen by the Ariane accident.
Improvements in the maintenance of critical
software could reap great benefits. The ability to
quickly (and cheaply) correct and/or enhance
code is vital to the current mission as well as the
others to come. One approach to this problem
may be to borrow ideas from those who do
maintenance well, open source software (OSS)

137

Charles P. Coleman
Massachusetts Institute of Technology
ccoleman@mit.edu

developers. OSS is based on the idea that “more
heads are better than one” or as Lawrence Lessig
put it, “Many tiny brushstrokes of thousands,
paints more and more powerfully than the blast
of even the most important and powerful
papers... [12].”

In this paper, we will briefly discuss the
challenge of creating mission critical software.
We will then give a description of OSS
development. We will look at the possible
benefits open source development can provide,
as well as point out possible shortcomings.
Finally, we will discuss how key open source
methodologies can improve mission critical
software.

2. Mission Critical Software

Mission critical software must perform
flawlessly. A number of approaches have been
made to ensure that this software runs smoothly.
Key approaches include: adding levels of
redundancy, following rigid guidelines, applying
formal methods, fault detection, and an extensive
amount of testing. Beyond the initial project,
software is often reused and thus, it must be
ensured to work perfectly in this new setting as
well. A study done by Case Associates showed
that between 50 to 70 percent of a software
engineer’s time is spent making changes to
mission-critical software. [20] This maintenance
work plays a major role in the duties of every
software engineer. “Software maintenance is the
most time consuming and resource consuming
part of the whole software development
process.” [26] “Today’s maintenance efforts can
best be described as system-replacement
projects, in which organizations migrate or
replace existing software functions rather than
build them from scratch. Most of the
maintenance programmer’s time is spent figuring



out legacy code, defining what the current
system does, where, and how.” [20]

The maintenance problem is much larger for
critical systems though. Software maintenance
must be much more thorough, much more
complete than the normal system, because of the
high risks involved. There is much more to lose:
with human lives on the line, a much greater
amount of money, or particularly valuable
information. The bugs that routinely pop up in a
web browser or an operating system can not be
allowed to happen in a critical system.

Software has often been seen as a system
‘component’ to be verified individually. Many
now seen that “software” cannot be listed as one
of the subsystems. Software holds together and
interacts with every ‘mechanical’ component.
“Software allows almost unlimited complexity in
component interactions and coupling compared
to the physical constraints imposed by the
mechanical linkages replaced by computers.”
[13]

Attempting to liken hardware systems to
software systems has caused problems for
testing. When measuring reliability in hardware,
an ultrahigh reliability has historically been seen
as a probability of failure on the order of 10-7 to
10-9 for 1- to 10-h missions. But software does
not physically fail as hardware does; software is
either correct or incorrect with respect to its
specification. [6] Software ‘failures’ that lead to
an accident are usually a complex combination
of equipment failure, faulty maintenance,
instrumentation and control problems,
management errors, design errors, and operator
errors. [24]

More problems arise when attempting to
validate mission critical software.

In particular, software may be highly reliable
and correct and still be unsafe when: the
software correctly implements its requirements
but the specified behavior is unsafe from a
system perspective; the requirements do not
specify some particular behavior required for the
safety of the system; the requirements are
incomplete; or the software has unintended (and
unsafe) behavior beyond what is specified in the
requirements. [13]

Mission critical software must be thoroughly
examined. Difficulties arise when trying to
determine when enough testing has been done.
At least half the resources in software
development today are devoted to testing. For
safety critical systems, much of this testing is
used to build confidence that the software is safe.
Unfortunately, the confidence achieved this way

138

is limited. We are able to test only a small
fraction of the enormous state space. [13]

The problems that must be faced in creating
mission critical software have now been shown.
Rather than using the methods currently in use
for overcoming these difficulties, we believe a
higher level approach may be advantageous. We
propose that using ideas from the open source
movement could reap benefits at the
organizational level. Let’s look at what the open
source community can add to mission critical
software.

3. Open Source Movement

The open source movement has produced
robust office suites, operating systems,
commercial grade database systems, not too
mention the most popular web server, Apache.
GNU/Linux is currently the fastest growing
operating system [21]. “Open source has played
a fundamental role in the development of the
Internet by contributing to such remarkable
software as TCP/IP, BIND, Sendmail, Linux,
and Apache [10].”

3.1 Benefits

There are a large number of benefits to using
open source methodologies, which could
dramatically improve mission critical software.
OSS promotes shared expertise, as anyone can
learn from what “specialists” did. Many open
products have proven to be reliable, portable, and
scalable, attributes every product seeks to attain.
The open source approach is often attributed
with creating software with “shallow bugs.”
This may seem obvious; a large number of
programmers sifting through code will find more
bugs than a small group. Some argue that a
small group of specialists can locate bugs better
than many non-specialists. The following is an
excerpt from “Open Internet Wiretapping”:

It is difficult to overstate the value of the kind of
widespread review that open source can provide
for security-critical systems. Even intense
review by small teams of experts often misses
small but serious bugs that turn out to have
severe security implications. For example, it
was only review by the open research
community that found several protocol failures
in the National Security Agency’s “Clipper” key
escrow system, in spite of internal reviews by the
Agency [5].



This is an example of a key benefit of the
open source paradigm, peer review. In every
engineering field, peer review is the cornerstone
to furthering ideas, yet software source code is
rarely reviewed, objectively, on the level OS
code is reviewed. The importance of peer
review can’t be underestimated. As one visible
example, Amazon.com began as one of many
online booksellers, but their peer book review
service helped them to become a dominant
online marketplace. The situation was similarly
true for the gain in popularity of Google.com.
Their search engine ranks websites based off the
popularity of the website (how frequently it has
been linked to by others). This feedback from a
large community is very useful in making
decisions.

Another reason OSS has “shallow bugs” is
the idea of “releasing early and often.”
Whenever changes have been made to the
project, this new version is released for others to
look through and test. This allows for bugs to be
found immediately, rather than at the end of the
development process. Debugging takes place in
parallel with development. This is of great
importance, particularly since bugs found early
are “cheap” to fix, relative to those found late in
the process.

OSS can also have an effect on education.
Evaluating other’s code as well as having them
evaluate one’s own leads to great advances in
skill. Knowing your code will be seen by many
people, particularly peers, tends to lead to better
coding habits. Releasing the code for anyone to
peruse puts education at the forefront. Open
source projects have provided a library full of
source code, from real world reliable systems,
that any student can learn from.

3.2 Shortcomings

There are a few questions that need to be
answered before an organization can jump in and
support OSS. Are there any guarantees that the
project will ever be completed? That a particular
bug will be fixed? Is the software secure?
Robust? Safe? In general, can an OS project be
mission critical?

Many of these questions can be answered
directly by citing examples. Apache, Linux, and
Kerberos have shown that secure open source
projects can be successful. Developers have
created robust, reliable systems that fit the needs
of many individuals and organizations. The
question of whether the project will be

139

completed can be asked of any project. It would
never be wise to blindly use a product. Before
you commit to any product, you’d have to take
into account how active the developers are in
fixing reported bugs, commercial or open source.
The main difference is that individuals can
contribute to fixing OSS bugs, rather than wait
for the next version of a commercial product.

4. Possible improvements

In general, OSS methodologies can improve
critical software, largely through peer review,
releasing early and often, and education. Even
for organizations that don’t wish to or cannot
give source code to general public, these
suggestions can be useful.

1. All code should be viewable, by anyone in the
company or at least expanded to those not
necessarily connected to the project. Right now,
code repositories are common, mainly for a
project, group, or a couple of groups, but
expanding the availability of the source code is
important. It is not at all unlikely that an
individual in a different group can give an
insight not available in the current group. This
also could help greatly curb redundant code.

2. Perhaps an hour a day, developers can read
code from other projects, and send contributions
to those projects, such as design suggestions,
style suggestions, bug reports, or comments in
general. Right now, I believe it is rare that
developers look at others code, unless they need
to fix a part of it. If developers are encouraged
to look at others code (and given time to), overall
improvements will be seen.

3. A practice that seems to be somewhat
common is to have a developer work on a few
projects simultaneously. This does help relieve
stagnation and molds a “better average
programmer.” Implementing open source
methodologies could take this idea another step
forward. A developer can be a key contributor to
a small number of projects, as well as an
occasional contributor to a larger number of
projects. The company and developer will see
gains by widening the “average toolset.”

While coding remains an essentially solitary
activity, the really great hacks come from
harnessing the attention and brainpower of entire
communities. The developer who uses only his
or her own brain in a closed project is going to



fall behind the developer who knows how to
create an open, evolutionary context in which
feedback, exploring the design space, code
contributions, bug-spotting, and other
improvements come from hundreds (perhaps
thousands) of people. [19]

4. Greenspun mentions in Internet Application
Workbook that most programmers suffer from
profound deficits in: thinking critically about
what the computer application should do, writing
down a design, writing down an implementation
plan, documenting important features/design
decisions, clean modular design, exercising good
judgement, communicating project status [1].

An open environment can begin to help correct
these deficiencies quickly, as bad habits are

difficult to conceal when the source code is open.

5. Conclusion

We have seen that maintenance is a crucial
part of creating successful mission critical
software. It is also the costliest part of the
development process. But perhaps maintenance
shouldn’t be looked at as the expensive phase at
the end of the development process. Perhaps
maintenance should be thought of as being a
vital part of every phase. OSS does this by
debugging the source code in parallel with the
development process.

“Successful maintenance requires two things:
ability to make changes easily and an in depth
understanding of the software’s structure and
behavior [25].” OSS succeeds in both regards,
because 1) its projects source code is open to
anyone; 2) insight is accepted from experienced
programmers as well as first time contributors;
3) source code is released frequently to minimize
“bug damage” and 4) open source developers
form a competitive community, fostering an
excellent learning environment. Taking this all
into account, it is easy to see that OSS
methodologies can be a great tool to improve
mission critical software.

140

6. References

[1] Andersson, Eve, Phillip Greenspun, Andrew
Grummet. Internet Application Workbook.
4/2001. http://philip.greenspun.com/internet-
application-workbook/

[2] Anderson, Ross. “Security in Open versus
Closed Systems — The Dance of Boltzmann,
Coase, and Moore.” Cambridge University.
June, 2002.
http://www.ftp.cl.cam.ac.uk/ftp/users/rjal4/toulo

use.pdf

[3] The Apache Software Foundation.
http://www.apache.org/

[4] Augustin, Larry, Dan Bressler, Guy Smith.
“Accelerating Software Development Through
Collaboration.” ICSE 2002.

[5] Bellovin, Steve, Matt Blaze. “Open Internet
Wiretapping.” 7/19/2000.
http://www.crypto.com/papers/opentap.html.

[6] Butler, Ricky W. and George B. Finelli. The
infeasibility of Quantifying the Reliability of
Life-Critical Real-Time Software. IEEE
Transactions on Software Engineering. January
1993.

[7] Ciofti, Denis F. “Learning From Hackers.”
IEEE Spectrum. June 2001.

[8] Hunt, Andy, and Dave Thomas. Software
Archaeology. IEEE Software. March/April
2002.

[9] Glass, Robert L. “Frequently Forgotten
Fundamental Facts about Software Engineering.’
IEEE Software. May/June 2001.

s

[10] Hann, II-Horn, Jeff Roberts, Sandra
Slaughter, Roy Fielding. “Why Do Developers
Contribute to Open Source Projects? First
Evidence of Economic Incentives.” ICSE 2002.

http://opensource.ucc.ie/icse2002/HannRobertsS1
aughterFielding.pdf

[11] Knight, John. “Critical Task of Writing
Dependable Critical Software.” IEEE Software.
January 1994.

[12] Lessig, Lawrence.
http://cyberlaw.stanford.edu/lessig/blog/




[13] Leveson, Nancy G.. “System Safety in
Computer-Controlled Automotive Systems.”
SAE Congress. March, 2000.

[14] Leveson, Nancy G.. Safeware: System
Safety and Computers. Addison-Wesley. 1995.

[15] Maguire, Steve. Debugging the
Development Process. Microsoft Press. 1994.

[16] McConnell, Steve. Code Complete.
Microsoft Press. 1993.

[17] NASA IV&V Facility.
http://www.ivv.nasa.gov/fag/index.shtml

[18] Open Source Initiative.
http://www.opensource.org/

[19] Raymond, Eric Steven. “The Cathedral and
the Bazaar.” 2000.
http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar/index.html

[20] Sharon, David. “Meeting the Challenge of
Software Maintenance.” IEEE Software.
January 1996.

[21] Stone, Adam. “Open Source Acceptance
Grows.” IEEE Software. March/April 2002.
pl02.

[22] Virginia Tech. “Software Process Models.”
Aug 98.
http://ei.cs.vt.edu/~cs1704/fall.98/notes98/2up/1

2.SEMod.pdf

[23] Vicente, Kim J. Cognitive Work Analysis:
Toward Safe, Productive, and Healthy
Computer-Based Work. Lawrence Erlbaum
Associates. 1999.

[24] Voas, Jeffrey. “Certifying Software for
High-Assurance Environments.” IEEE
Software. July/August 1999.

[25] Wilde, Matthews, Huitt. “Maintaining
Object Oriented Software.” IEEE Software.
January 1993.

[26] Zagal, Jose Pablo, Raul Santelices Ahues,
Miguel Nussbaum Voehl. “Maintenance-
Oriented Design and Development: A Case
Study.” IEEE Software. July/August 2002.

141



