Mining Evolution Data of a Product Family-

Michael Fischer, Johann Oberleitner and Jacek Ratzinger

Distributed Systems Group
Information Systems Institute
Technical University of Vienna
A-1040 Vienna, Austria

{fischer,oberleitner,ratzinger} @infosys.tuwien.ac.at

ABSTRACT

Diversification of software assets through changing requirements
impose a constant challenge on the developers and maintainers of
large software systems. Recent research has addressed the mining
for data in software repositories of single products ranging from
fine- to coarse grained analyses. But so far, little attention has been
payed to mining data about the evolution of product families. In this
work, we study the evolution and commonalities of three variants
of the BSD (Berkeley Software Distribution), a large open source
operating system. The research questions we tackle are concerned
with how to generate high level views of the system discovering and
indicating evolutionary highlights. To process the large amount of
data, we extended our previously developed approach for storing
release history information to support the analysis of product fam-
ilies. In a case study we apply our approach on data from three
different code repositories representing about 8.5GB of data and
10 years of active development.

1. INTRODUCTION

Unanticipated evolution of a single software system enforced
through changing requirements can lead to diversification and will
result in different closely related products. These related products
require a high maintenance effort which could be avoided by build-
ing a platform for a Product Family (PF) from existing software
assets. To identify assets from related products which can be used
as basis for a PF, retrospective software evolution analysis can help
to point out artifacts which exhibit a strong change dependency.

Most of the proposed mining approaches such as Zimmermann
et al. [14] for mining the change history or Collberg et al. [3] for
visualizing a systems evolution are justified to analyze data from a
single source and would therefore require adaption to support data
from multiple product variants. Analyzing a single product vari-

*The work described in this paper was supported in part by the
Austrian Ministry for Infrastructure, Innovation and Technology
(BMVIT), the Austrian Industrial Research Promotion Fund (FFF),
the European Commission in terms of the EUREKA 2023/ITEA
project FAMILIES (http://www.infosys.tuwien.ac.at/Cafe/) and the
European Software Foundation under grant number 417.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MSR’05, May 17,2005, Saint Louis, Missouri, USA

Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

12

Harald Gall
University of Zurich
Department of Informatics
s.e.a.l. — software
evolution & architecture lab
{gall @ifi.unizh.ch

ant implies a strict order on historical information such as check-
ins into the source code repositories. In contrast to this, multi-
ple product variants can be roughly characterized through arbi-
trary and asynchronous release dates, unanticipated information
flow between variants, different development goals and require-
ments. Given these constraints, with our PfEvo approach we ad-
dress the problem of handling multiple, asynchronously maintained
version control systems to identify change dependencies through
“alien” source code.

Artifacts with a strong change dependency often have architec-
tural dependencies as research by Briand et al. has shown [1, 2].
Another prevalent reason is duplicated code through copy’n paste.
For the analysis of such change dependencies it would be beneficial
if existing approaches and techniques can be adapted and reused to
study their impact onto the module structure.

As a result, an expert may draw conclusions about commonali-
ties and dependencies between source code modules based on re-
sults obtained from the change history analysis. Then, the identified
software artifacts can be used as foundation for building a platform
for a product family. A Representative of such a family of related
products is the BSD operating system with its variants and deriva-
tions such as MacOS X, SunOS, or NetBSD.

In this paper we (1) apply and extend our approach [5] for ex-
tracting change history information and generating a release history
database; (2) compare product variants on quantitative level for a
coarse assessment of the historical development and assessment of
the repository information for further research; and (3) apply our
approach for the visualization of change dependencies [4].

The remainder of this paper is organized as follows: Section 2
presents our approach for studying product family evolution. In
Section 3 we present our case study about three BSD variants. Sec-
tion 4 presents related work and Section 5 draws our conclusions
and indicates future work.

2. AN APPROACH TO STUDY PRODUCT
FAMILY EVOLUTION

Our PfEvo approach is an extension of existing techniques for
the study of the evolution of a single software system and comprises
the visualization of different aspects of the evolution of a software
system. Besides some quantitative aspects such as the number of
artifacts, check-in transactions, etc., these systems can be compared
qualitatively as well. These quality aspects can be related to the
type and extent of information flow between different systems, the
impact of other related products on a single product, or hot-spots in
the evolution of a single system with respect to information from
other product variants.

To answer the research question of source code propagation within

Consolidated DB

Figure 1: Process outline of PfEvo: results are a consolidated
RHDB and visualizations

a product family we have adopted our earlier approach for build-
ing a release history [5] and visualization of evolutionary informa-
tion of large-scale software [4] and propose the process depicted
in Figure 1. Since all data sources must undergo the same pre-
processing steps—log file extraction, import into Release History
Database (RHDB), detection of change couplings—we use sepa-
rate databases to store the results. For subsequent analysis trans-
actional data from the separate databases are filtered and merged
into a new consolidated database which is better suited for queries
spanning multiple product variants. Currently we use modified
variants of existing queries to gather data from the three product
databases to compare them on a quantitative level. Another ap-
proach to compare system characteristics is by visually comparing
graphs describing a systems history. We use a module graph indi-
cating the impact of change dependency and their distribution with
respect to different product variants onto the module structure of a
single system.

In previous studies it was possible to use the release dates of
the system under study as input for time scale information. Since
the BSD variants are developed independently, an artificial, com-
mon time scale has to be created. This ensures comparability of
the different system histories. Disadvantageous is that is not pos-
sible to examine and compare the processes between the release
dates, since the release intervals of the different product variants
are crosscut at arbitrary points. Since our requirement is the visu-
alization of the resulting data-sets, we use a sub-sampling interval
of one month.

To detect and relate information flow between BSD variants we
decided to use lexical search in the change logs to find hints for
information flow from other systems into the system under inspec-
tion. Alternatives to a pure lexical search are clone detection in
source code, comparison of the structure of changes, or advanced
indexing and text-analysis techniques.

3. CASE STUDY

For this case study we decided to use derivatives of the Berkley
System Distribution also known as BSD Unix. The selected three
variants — FreeBSD, NetBSD, and OpenBSD — of BSD are large soft-
ware systems consisting of an operating system kernel and a num-
ber of external programs such as Is, passwd, the GNU Compiler
Collection (GCC), or the X windows system. These variants have
between 4800 for the OpenBSD variant and 8000 directories for
the NetBSD variant. The number of files varies between 30,000
(FreeBSD) and about 68,000 (NetBSD). They are long lived, ac-
tively maintained software systems representing about 8.5GB of
data stored in three different repositories. Furthermore, release in-
formation is available as CVS [7] data for all three variants with

13

300

250 -

200

150

Number of references

50

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

407 -2.57"x

FreeBSD --—+-- NetBSD ---x--- Linux —-%--

Figure 2: Number of references to keywords FreeBSD, NetBSD,
and Linux found in OpenBSD change logs

direct access to the current repositories. The systems itself possess
different characteristics which can be described as follows: The
FreeBSD' projects aims to be more user application centric and
thus it can be seen as desktop OS rather than server platform. Its
first release was in December 1993. NetBSD? is targeted onto porta-
bility and supports more than 10 different CPU types with together
more than 50 different hardware platforms. Among them are exotic
platforms such as Acorn, Amiga, Atari or VAX Its first release was
in October 1994. As representative of a server platform the aim of
the OpenBSD® project lies on security and the integration of cryp-
tography. Its first release was in October 1996. While NetBSD and
FreeBSD were directly derived from the 4.3BSD branch, OpenBSD
was derived from the NetBSD branch in October 1995.

3.1 Quantitative comparison

First we give a quantitative comparison of the number of arti-
facts which are common for the different systems. To determine the
number of common C files in the different RHDBs we use multi-
database SQL queries. Table 1 shows the result for the different
variants. While column “all modules” indicates the total number of
common files found, column “src/sys only” indicates the common
files within this particular subtree. Interesting is the high number
of artifacts which are common in NetBSD and OpenBSD. This can
be explained by the fact that OpenBSD was derived from NetBSD
as mentioned previously.

Table 1: Common files in different BSD variants

Variant | Variant | all modules | src/sys/ only
FreeBSD | NetBSD 3810 1333
FreeBSD | OpenBSD 3839 1079
NetBSD | OpenBSD 6969 6847

3.2 Change report text analysis

As substitution for a detailed text and code clone analysis, we
use keywords which were frequently used by the program authors
and recorded in change reports. As useful keywords we identified
freebsd, netbsd, openbsd, and interestingly linux.

Table 2 lists the number of referenced artifacts between product
variants based on a lexical search for the chosen keywords in the

"http://www freebsd.org/ [31 December 2004]
*http://www.netbsd.org/ [31 December 2004]
3http://www.openbsd.org/ [31 December 2004]

man4
%‘\ N y‘y :
binutils games atan A -
%7 %usr %g % i = wgrisc

§sggm !
i 2\

ROOT usr_sbin
O‘.\ % _gusrfbin

__ mvmeppc
rﬁVﬁieesg macppc

\a‘\ po! c

fibe i r
g glibpthread % R

Figure 3: Change coupling between modules of the source code
structure of the OpenBSD system with emphasize on the module
structure

Table 2: Information flow between variants of the BSD systems
based on lexical search

Variant Keyword | all revisions | revision > 1.1
FreeBSD | netbsd 5131 3577
openbsd 2729 1353
linux 1791 1387
NetBSD freebsd 2852 2186
openbsd 2679 2224
linux 1547 1125
OpenBSD | freebsd 2406 1933
netbsd 16802 7423
linux 775 463

change logs. Column one lists the name of the product variant used
to retrieve the change logs and column two the respective keyword.
Column three entitled “all revisions” lists the number of distinct
artifacts found in the RHDB having change logs with the specified
keyword. Column four titled “revision > 1.1 lists the number
of distinct artifacts found in the RHDB having change logs with
the specified keyword and not having a revision number of “1.1”
(which denotes the initial revision). The significant difference be-
tween the values in column three and four can be interpreted in
such a way, that a larger number of files were imported from other
systems and further maintenance is decoupled from the originating
version.

3.3 Reference distribution

During the lexical search for the given keywords we recorded
in total 12,540 change logs for FreeBSD, 9,468 for NetBSD, and
20,906 for OpenBSD. Based on these results, Figure 2 depicts the
distribution of references with respect to the observation period.
Visually the histogram for OpenBSD suggest a strong decreasing
trend in the information flow from other platforms into the OpenBSD
source code repository.

To underpin the visual perception of the trends we use linear
regression analysis to find the dependency between the number of

14

BBk 20,
1%&(mvme88k

Figure 4: Change coupling between modules of the source code
structure of the OpenBSD system

references and time-scale intervals.

Table 3: Linear regression for referenced keywords as y = d + kx
for the whole observation period, for the years 1995-2001 (y =
d112 + k:lygx) and the years 2001-2004 (y = d3,3 + krgygx)

Variant ‘ d ‘ k ‘ d1,2 ‘ k1. 2 ‘ d3,3 ‘ k‘3,3
FreeBSD 2277 10897 | -2.67 146 387 | -2.35
NetBSD -22.7 128 | -15.7 1.14 | -21.3 1.31
OpenBSD 407 | -2.57 543 | -4.90 668 | -4.48

To test the development of the references over the given obser-
vation period we computed the values for the whole period and two
sub-intervals: the first interval accounts for about 2/3 (variables
k1,2 and d; 2) of the observation period which corresponds to the
years 1995-2001; the second interval accounts for about the last 1/3
(variables k3,3 and d3,3) of the observation period which represents
the last 36 months of the development history (years 2001-2004).

Table 3 shows the results for the three variants indicating a strong
increasing trend for FreeBSD and NetBSD (k > 0 for both variants
over the whole observation period). For FreeBSD this trend re-
verses for the last 36 months (k3,3 < 0). The low number of total
change logs found for NetBSD and the positive trend in the change
dependency of NetBSD suggest that large amounts of source code
are still derived from the other OS variants. This perception is also
supported by Table 2 since NetBSD has the highest ratio between
the two counted categories “revisions > 1.1 and “all revisions”. In
contrast, OpenBSD exhibits a decreasing trend in both sub-intervals
and the whole observation period starting from a high level (straight
line in Figure 2).

In the next sections we provide a more detailed look onto the
change relationships with respect to different products.

3.4 Change impact analysis

To show the impact of changes onto the module structure with
respect to foreign source code we selected OpenBSD for a closer
inspection since we counted here the most keywords referencing
other OS (see Table 2). The relevant artifacts were identified through
lexical search as previously described. Based on the search results
and the change log data the impact of change dependencies on the
module structure is evaluated. The result of this step is depicted
in the Figures 3 and 4. It shows the module structure together
with change dependencies derived from the change log data. While
filled circles indicate the nodes of the directory tree, shaded boxes
indicate different product variants. We use N as glyph for FreeBSD,

for NetBSD, and E is used for Linux. The approach for gener-
ating the layout for change dependencies information is based on
Multi Dimensional Scaling (MDS) [9] and has been used by our
group to visualize to impact of problem report data onto the mod-
ule structure of large software [4].

To avoid cluttering of the figure with the several hundred mod-
ules of the source code package, we shifted relevant information
from lower level nodes of the nested graph structure towards the
root node until a predefined threshold criterion—at least 64 refer-
ences through change couplings per node—is met. The node sizes
indicate the number of references found for each node and its sub-
trees.

While dashed lines indicate the directory structure of the source
package, solid gray and black lines (pink and red on color displays)
indicate the logical coupling between different parts of the system.

Figure 3 shows the dependencies between modules with em-
phasize on the module structure (149 nodes). The distribution of
the glyphs for FreeBSD, NetBSD, and Linux indicates a signifi-
cant impact—though decreasing trend—of the other OS variants
onto the development of OpenBSD. Only very few modules such as
libpthread—POSIX threads are not part of the Linux kernel sources —
or lists (on the bottom left in Figure 3) are not infected by “Linux
virus”. This wide distribution of Linux related change dependen-
cies is a surprising result since we did not expect such a distribu-
tion after the quantitative analysis. Interesting as well is that change
dependencies occur mainly within the src/sys sub-structure which
represents the kernel related source code parts.

After filtering of less relevant modules and shifting the informa-
tion to higher level modules in the hierarchy we obtain the graph
depicted in Figure 4 (14 nodes). Here, the graph layout respects
the strength of coupling relationships —the stronger the coupling,
the closer the nodes—between the different modules. This more
comprehensible and less cluttered picture of couplings highlights
the dependencies of the documentation in src/ share/ man, the sys-
tem administration programs in src/ sbin, user application programs
such as [s in src/usr_bin and src/usr_sbin from the OS kernel re-
lated files underneath src/sys. Interesting to see is also the strong
coupling via “foreign” source code changes between src/sys/arch/
i386 and src/sys/dev since this coupling spans across the module
hierarchy.

Since the size of the nodes indicates the number of relevant change
entries found, we can conclude that the strongest impact of change
coupling was on src/sys, src/sys/dev, src/sys/arch, and src/sys/
arch/i386. Table 4 lists an excerpt of the topmost referenced ar-
tifacts which suggests a high information exchange with other soft-
ware systems.

Table 4: Topmost referenced files with one of the given keywords
in the change logs of OpenBSD

Keyword | Count | Path

freebsd 59 | src/sys/dev/pci/files.pci

. 52 | src/sys/dev/pci/pciide.c

. 52 | src/sys/dev/pci/pcidevs

netbsd 45 | src/sys/arch/i386/i386/machdep.c
43 | src/sys/dev/pci/pciide.c

. 39 | src/sys/conf/files

linux 14 | src/sys/compat/linux/linux_socket.c
14 | src/sys/compat/linux/syscalls.master

5 | src/sys/dev/ic/if_wireg.h

An example for the propagation of commonly required feature
is the introduction of the PCI bus. Since this device type was not
widely available at the time of the OpenBSD fork in 1996, support
had to be added later requiring several separate changes as Table 4

15

suggests. Another interesting aspect is the relationship with Linux.
The listing of if_wireg.h suggests that specific information about
WLAN adapters are obtained from Linux as well.

3.5 Detailed change analysis

Since the three BSD variants originate from the same UNIX
branch, it is to expect that also a number of source code changes
exhibit the same or at least similar structure. For a manual ver-
ification we randomly selected one file which is available in all
three variants. For this file—ufs_quota.c from the src/sys/ufs/ ufs/
directory —we manually inspected the revision history for signifi-
cant changes.

One significant change was the modification of a function call
in the FreeBSD version of ufs_quota.c on 1994-10-06 (revision 1.2
— 1.3) resulting in eight modified source lines. The diff-snippet—
depicted below —for the affected source code revision shows a sin-
gle change of a source line. The first line indicates the removed
code, whereas the third one shows the replacement code. The three
dashes in-between indicate a delimiter line.

< sleep ((caddr_t)dq, PINOD+2);

> (void) tsleep ((caddr_t)dq, PINOD+2, ”dgsync”, 0);

In the change log we found the following comment, which indicates
the reason for the source code modification: “Use tsleep() rather
than sleep so that "ps’ is more informative about the wait.”

The same modification in the NetBSD version has been applied
on 2000-05-27 which is six years later than the original modifi-
cation (revision 1.16 — 1.17) and in OpenBSD more than eight
years later on 2001-11-21 (revision 1.7 — 1.8)—though without
the (caddr_t) type cast listed in the preceding code snippet. The
diff-snippet below depicts the modification.

< sleep ((caddr_t)dq, PINOD+2);

> (void) tsleep (dq, PINOD+2, ”dgsync”, 0);

In the NetBSD variant of the change log the comment is less in-
formative: “sleep() -> tsleep()”. While in NetBSD this change still
produces similar results when building the revision deltas via diff,
in OpenBSD the change was part of a larger source code modifi-
cation consisting of 380 added and 161 deleted source lines (CVS
does not identify modified lines, instead every modified line ac-
counts for one added and one deleted line). Analogues to the given
example, many changes can be found with varying degree of simi-
larity making it difficult to track source code propagation.

3.6 Discussion

During experiments with our RHDB we noticed some shortcom-
ings which have to be resolved prior to a thorough analysis of
the different product variants. First, through moving and renam-
ing files in the CVS repository by the developers of the software
systems, the historical information is segmented. Thus related seg-
ments have to be identified and concatenated to describe a contin-
uous historical time-line of an artifacts history. Second, as result
of the import process artifacts which have identical file names are
assigned different IDs in the RHDB. This may negatively effect
multi-database queries for comparison of artifacts since artifacts
with common origins have to be identified for every evaluation of
a database query. This mapping of IDs will be ideally stored in the
consolidated part of the RHDB as indicated in Figure 1.

From the software evolution analysis point of view, BSD repre-
sents an interesting software system which opens a wide field for
further analysis. Since detailed information about the source code

is available it would be beneficial to apply a tool for code clone
detection such as [8] proposed by Kamiya et al. To improve the
results of the lexical search we currently explore the application of
techniques related to Latent Semantic Indexing (LSI) [10].

4. RELATED WORK

Within the EU projects ARES, ESAPS, CAFE, and Families
much work has been done in areas such as the identification of
assets for product family architectures, evolution and testing of ex-
isting product families, or architectural models for product families
(Van der Linden [12]). More related with our work with respect to
product family evolution is the approach presented by Riva and Del
Rosso in [11]. They investigated the evolution of a family platform
and describe approaches which enable assessment and reconstruc-
tion of architectures. In contrast to their work, we investigate the
evolution of different variants to identify candidates for building a
family platform.

In [6] Gall, Hajek and Jazayeri examined the structure of a large
Telecommunications Switching Software (TSS) over more than 20
releases to identify logical coupling between system and subsys-
tems. This coupling is used in further processing steps to reveal
evolutionary aspects such as hot-spots. For the detection and vi-
sualization of evolutionary hot-spots we have developed a method-
ology which relates software feature and release history informa-
tion [4]. In this paper we used information from the release history
with respect to different keywords instead of feature data. This
information was reflected onto the module structure of the source
code and visualized to generate the high level views of a software
system. Independent from our research work Yamamoto et al. in-
vestigated variants of the BSD system for similarities as well [13].
They mainly use CCFinder by Kamiya et al. [8] to compute simi-
larity metrics of the source code. In contrast to our work, their aim
lies on the overall similarities between different products, rather
than the type, amount and distribution of information flow between
the variants.

5. CONCLUSIONS

Retrospective analysis of variants of related products opens in-
teresting perspectives on the evolution of large software systems.
With minimal changes and additions to existing tools it is already
possible to recover the information flow between the different vari-
ants and evolutionary hot-spots with respect to the module struc-
ture. Through the application of a lexical search in the change logs
we were able to reveal the increasing information flow of two vari-
ants of the systems. For the third system we found a decreasing
flow starting from a very high level. For one selected system we
applied an adapted method which generates high-level views of the
module structure of a system with respect to their coupling and in-
formation flow from other product variants. To support these find-
ings about the information flow we performed detailed change anal-
ysis of a randomly selected file. Interesting results are: the wide
distribution of Linux related change dependencies in the source
code; the strong change coupling within the subtree of src/sys; and
the propagation of source code taking several years.

For future work we plan the application of a code clone detection
process to identify related modifications. An analysis can reveal the
degree and frequency of how tight product variants are coupled.
Another interesting area for future work is the detailed analysis
of change log information for commonalities. Since change logs
can provide additional hints about a particular modification, they
provide relevant information which enables the identification of a
modifications origin.

16

6. REFERENCES

[1] BRIAND, L., DEVANBU, P., AND MELO, W. An
investigation into coupling measures for C++. In
Proceedings of the 19th international conference on
Software engineering (1997), ACM Press, pp. 412-421.
BRIAND, L. C., DALY, J. W., AND WUST, J. K. A Unified
Framework for Coupling Measurement in Object-Oriented
Systems. IEEE Transactions on Software Engineering 25, 1
(1999),91-121.

COLLBERG, C., KOBOUROV, S., NAGRA, J., PITTS, J.,

AND WAMPLER, K. A system for graph-based visualization

of the evolution of software. In Proceedings of the 2003

ACM symposium on Software visualization (2003), ACM

Press, pp. 77-t.

FISCHER, M., AND GALL, H. Visualizing Feature Evolution

of Large-Scale Software based on Problem and Modification

Report Data. Journal of Software Maintenance and

Evolution 16, 6 (November/December 2004), 385-403.

FISCHER, M., PINZGER, M., AND GALL, H. Populating a

Release History Database from Version Control and Bug

Tracking Systems. In Proceedings International Conference

on Software Maintenance (ICSM’03) (September 2003),

pp. 23-32.

GALL, H., HAJEK, K., AND JAZAYERI, M. Detection of

Logical Coupling Based on Product Release History. In

Proceedings International Conference on Software

Maintenance (March 1998), IEEE Computer Society Press,

pp. 190-198.

[71 GRUNE, D., BERLINER, B., POLK, J., KLINGMON, J.,

AND CEDERQVIST, P. Version Management with CVS, 1992.

http://www.cvshome.org/docs/manual/ [5 April 2004].

KaMmiya, T., KusuMoOTO, S., AND INOUE, K. Ccfinder: A

multilinguistic token-based code clone detection system for

large scale source code. IEEE Transactions on Software

Engineering 28,7 (2002), 654-670.

KRUSKAL, J. B., AND WISH, M. Multidimensional Scaling.

Quantitative Applications in the Social Sciences 11 (1978).

[10] LETSCHE, T. A., AND BERRY, M. W. Large-scale
information retrieval with latent semantic indexing.
Information Sciences 100 (August 1997), 105-137.

[11] RIvA, C., AND DEL ROSSO, C. Experiences with software
product family evolution. In Proceedings Sixth International
Workshop on Principles of Software Evolution (IWPSE’03)
(September 2003), IEEE Computer Society Press,
pp- 161-169.

[12] VAN DER LINDEN, F., Ed. Software Product-Family
Engineering: 5th International Workshop, PFE 2003, Siena,
Italy, vol. 3014 of Lecture Notes in Computer Science.
Springer-Verlag Heidelberg, 2004.

[13] YAMAMOTO, T., MATSUSHITA, M., KAMIYA, T., AND
INOUE, K. Measuring Similarity of Large Software Systems
Based on Source Code Correspondence. In Proceedings of
the 6th International Conference on Product Focused
Software Process Improvement (PROFES’05) (June 2005). to
appear.

[14] ZIMMERMANN, T., WEISSGERBER, P., DIEHL, S., AND
ZELLER, A. Mining Version Histories to Guide Software
Changes. In Proceedings 26th International Conference on
Software Engineering (ICSE) (May 2004), ACM Press,
pp- 563-572.

[2

—

[3

—

[4

—

[5

—_

[6

—_

[8

—_

[9

—

