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ABSTRACT 
In this paper, we analyze the data extracted from several open 
source software repositories. We observe that the change data 
follows a Zipf distribution.  Based on the extracted data, we 
then develop three probabilistic models to predict which files 
will have changes or bugs. The first model is Maximum 
Likelihood Estimation (MLE), which simply counts the number 
of events, i.e., changes or bugs, that happen to each file and 
normalizes the counts to compute a probability distribution. The 
second model is Reflexive Exponential Decay (RED) in which 
we postulate that the predictive rate of modification in a file is 
incremented by any modification to that file and decays 
exponentially. The third model is called RED-Co-Change. With 
each modification to a given file, the RED-Co-Change model 
not only increments its predictive rate, but also increments the 
rate for other files that are related to the given file through 
previous co-changes.  We then present an information-theoretic 
approach to evaluate the performance of different prediction 
models. In this approach, the closeness of model distribution to 
the actual unknown probability distribution of the system is 
measured using cross entropy. We evaluate our prediction 
models empirically using the proposed information-theoretic 
approach for six large open source systems. Based on this 
evaluation, we observe that of our three prediction models, the 
RED-Co-Change model predicts the distribution that is closest 
to the actual distribution for all the studied systems.  
 
Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement- Version control  
D.2.8 [Software Engineering]: Metrics- Performance 
measures, Process metrics 
General Terms 
Performance, Reliability, Theory 

Keywords 
Prediction Models, Evaluation approach, Information Theory 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
MSR�’06, May 22�–23, 2006, Shanghai, China. 
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00. 
 

1. INTRODUCTION 
Software systems are continuously being changed to adapt to 
meet the needs of their users or to correct the faults appearing in 
systems during development or after deployment. There has 
been extensive research on new processes and approaches for 
developing software systems to minimize these new 
modifications. The idea is that during software development by 
following some specific principles, the probability of certain 
kinds of modifications can be decreased. Despite this progress, 
new changes and bugs are inevitable during software 
development. However, if software developers were able to 
forecast the occurrence of changes and bugs then they could 
mitigate their impact. Therefore, developing accurate techniques 
to predict the future behavior of changes and bugs can be 
valuable for software development and maintenance. 
The idea for predicting which files/subsystems are most 
susceptible to having a fault in the near future is a well-known 
idea. There exist several prediction models [5][6][8][9][10][14] 
and more are emerging. However, many of these fault prediction 
models have not been evaluated in practice and some of them 
are not applicable to large-scale software systems. The majority 
of fault prediction models are applicable to deployed systems 
only. The general approach for evaluating these models is to run 
the system and collect the observed information during its 
execution and then compare it with the results predicted by the 
models [18]. The problem is that too often these models are not 
general and hence, they are not applicable to different software 
systems. In many cases, because the models measure different 
metrics, the results are not comparable [18]. There are many 
questions with respect to the validity of the underlying 
assumptions, accuracy, and applicability of software prediction 
models. In this paper, our goal is to contribute toward more 
general and realistic assessment and prediction of software 
modifications based on theoretical and empirical studies. We are 
interested in methods and models that have two properties. First, 
they use data collected during development process and second, 
their distance from the actual but unknown distribution of the 
collected data can be measured. Our goal is twofold: first, to 
develop prediction models driven by software repositories and 
second, evaluate and compare different models using a 
mathematical approach. We use historical records, from source 
control repositories of large software systems, to develop 
prediction models and to estimate how much information is 
captured by the models.  
Figure 1 illustrates the problem we are trying to solve. Suppose 
we have a list of all the events that have so far occurred on 
different files of a software system during development process. 
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These events are file changes to fix bugs, or to add new features 
or change existing features. We have extracted these events 
from the history of the software. For example f21 shows that one 
modification has happened on file 21 at the specific time (see 
Figure 1). We ask this question: To what degree are these 
changes unpredictable? More particularly, what will be the 
uncertainty of the next sample, if all past samples are known? In 
some cases, it may be impossible to say anything about the next 
sample regardless of how many past samples are already known. 
In other cases, the process may be much less uncertain about the 
next sample when given the history of the changes. Having 
extracted historical data, we want to determine how much 
information this data provides us about the future. Our results 
indicate that CVS log data contains information about the past 
that can help to predict the future. The questions include: How 
much information is buried in the CVS logs and how can we 
capture this information? How good are the prediction models 
that use this information to predict the future? 
 

 
Figure 1. Does past predict future? 
 
After introducing related work in Section 1.1, the rest of the 
paper is organized as follows. Section 2 presents the techniques 
and approaches we used to perform different experiments in 
order to analyze the data extracted from several open source 
software repositories. In Section 3, we present our three 
prediction models and describe the steps involved in developing 
the models. In Section 4, we present an information theoretic 
approach for evaluation prediction models. In Section 5 presents 
the results of using two approaches for evaluating our proposed 
prediction models: the Top Ten List approach proposed by 
Hassan et al. [8] and our information theory based approach. 
Finally, Section 6 concludes the paper and discusses possible 
future works. 

1.1 Related Work 
Many researchers [2][5][6][8][9][16][17] in software 
development area have realized the value of historical data and 
have used them in their research ranging from software design 
to software understanding, software maintenance, development 
process and many more areas. 
There is considerable research on developing tools to recover 
such historical data. Hassan et al. [7] developed C-REX tool, an 
evolutionary code extractor, which recovers information from 
source control repositories. Zimmermann et al. [19] used version 
repositories to determine co-change clusters. They applied data 
mining to version histories in order to guide programmers 

through related changes. For detecting another kind of co-
changes Gall et al. [5] used software repositories. They 
uncovered the dependencies and interrelations between classes 
and modules (logical dependencies) which can be used by 
developers in maintenance phase of a system. 
Graves et al. [6] showed that there is a relation between the 
number of changes a subsystem has with the future faults in that 
subsystem. Hassan et al. [8] presented various heuristics using 
historic version control data to create the Top Ten List. Top Ten 
List highlights to managers the ten most susceptible subsystems 
to have a fault. They also developed techniques to measure the 
performance of these heuristics. 
Mockus et al. [12] studied a large legacy system to test the 
hypothesis that historic version control data can be used to 
determine the purpose of software changes and to understand 
and predict the state of a software project [13]. Khoshgoftaar et 
al. [9][10] used process history to predict software reliability 
and to show that the number of prior modifications to a file is a 
good predictor of its future faults. Eick et al. [4] presented 
visualization techniques to explore change data to help 
engineers understand and manage the software change process. 
Ostrand, et al. [14] suggested a model to predict the number of 
faults for a large industrial inventory system based on the 
history of the previous releases. 
Our approach takes guidance from this previous work, but is 
notably different by suggesting new prediction models and by 
using an information theoretic approach to measure the 
effectiveness of such models. 

2. CHARACTERISTICS OF THE DATA 
The prediction models and the evaluation methods presented in 
this paper are based on change history data. Change data is the 
information generated during development process and can be 
obtained through mining the repositories of the software. We 
began by analyzing the extracted data to understand its 
statistical properties. In particular, we observed that history data 
has Zipf distribution [20].  

2.1 Studied Systems 
To perform our study we used several CVS logs of open source 
software systems. Table 1 summarizes the details of the 
software systems we studied. The oldest system is over ten 
years old and the youngest system is five years old. We tried to 
choose the applications from different domains and different 
sizes. We were looking for any kind of change and bug which 
happens to different files of a system. The process of acquiring 
such specific data is very challenging, since CVS logs are 
mainly designed as record keeping repositories and commits 
aren�’t atomic and large amount of data stored in these 
repositories complicates the data extracting process. For 
analyzing data and creating prediction models and comparing 
them based on the data, our main concern was to perform our 
studies on the data of several CVS logs software systems in a 
standard format that is easier to process and not developing 
tools that automatically recover data from these repositories. So 
we obtained and used the data which were extracted from these 
CVS logs by tools developed by Hassan et al. [7]. This let us 
concentrate on analyzing the extracted data instead of spending 
time developing tools to recover the data. 
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Table 1. Number of events available for different systems   
Application 

Name 
Duration 
(Month) 

Total 
Events 

Bug  or 
Changes 

Total 
Files 

OpenBSD 88 80354 67149 7065 

FreeBSD 115 126432 101252 5272 

KDE 70 93204 77994 4063 

Koffice 58 92944 73409 6312 

NetBSD 119 239628 131307 11760 

Postgres 77 41175 26510 1468 

2.2 Zipf�’s Law 
We started by counting the number of modifications which 
happened for each file during the development process. Based 
on the history of the development, if we count how often each 
file is modified, and then list the files in order of the frequency 
of occurrence, we can explore the relationship between the 
frequency of a file and its position in the list, known as its rank. 
Figure 2 illustrates the number of modifications for each file for 
different systems we studied. Different systems have different 
number of files. Therefore, to compare all the studied systems in 
a single plot, we used the percentage of files and percentage of 
activities for each file in Figures 2 to 4. 
As it can be seen from the figure 2, there are few files with high 
frequency of changes but many files with very low number of 
changes. It also can be seen in the figure, these frequencies 
follow a similar pattern in all studied systems. This behavior 
indicates that the change data follows the general form the 
Pareto (or 80-20) law [15] and Zipf's law [20]. 
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Figure 2. Change data follows Zipf�’s law. 
 
The Pareto law, in its generalized form, states that 80% of the 
objectives - or more generally the effects - are achieved with 
20% of the means. In order to show that there is 80-20 law in 
our data, we plotted the cumulative distributions of the file 
frequencies in Figure 3. It can be seen from the figure that 
almost 20% of the files in the systems have (almost) 80% of 
activities during development. To show that Zipf�’s law holds for 
the data, we plotted the log-log scale of the cumulative 
frequency distributions; see Figure 4.  It can be seen that the 

points are close to a single straight line thereby confirming that 
the data approximates Zipf�’s law [20].  

3. CHANGE PREDICTION MODELS 
The prediction of future modifications in a large software 
system is an important part in software evolution. Since most 
prediction models in past studies have been constructed and 
used for individual systems, it has not been practically 
investigated whether a prediction model based on one system 
can also predict faults and changes accurately in other systems. 
Our expectation was that if we could build a model applicable to 
different range of systems based on the information which is 
generated during development process, e.g. CVS logs, it would 
be useful for software developers. In this Section we will show 
several prediction models which can use the CVS logs to predict 
the future bugs and changes in any arbitrary system. These 
models are generally in form of probability models.  
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Figure 3. Cumulative frequency distributions. 
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Figure 4. Log-log scale of cumulative distributions. 
 
After extracting the changes and bugs that occurred in the 
various files of a system during development, we created a 
sequence of events showing file changes to fix bugs or to add 
features. Having this sequence of events our goal is to predict 
future comparable events. There are many files in the systems 
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we studied, ranging from 1000 to 20000 files. We wanted to 
construct a probabilistic model of this process, in other words, 
to define a probabilistic model that characterizes the result of 
the next element in the sequence. We assume that we know that 
the possible value space, i.e., the Domain D (i.e., sample space) 
for event e (considered as a random variable).  In our work, D is 
the set of files in the system. We denote the elements of this 
Domain as f1, f2... fm. Our goal is to define a good probability 
model to give the probability that the ith (i.e., next) element in 
the sequence will have a particular value (will be a particular 
file); in other words for finding the probability distribution of 
random variable ei, what we need to do is to decide on the form 
of the underlying model of the sequence of events.  Ideally this 
would be a conditional probability function of form P(ei | e1, e2, 
...,ei-1). Our work is complicated by the fact that, in general, a 
new probability function is needed for each ei. Based on this 
approach, we will now present three probabilistic models. 

3.1 Most Likely Estimation (MLE) Model 
Our first model, maximum likelihood estimate (MLE), simply 
uses the counts from the sequence to estimate the distribution. 

)      () / N      Count(f)  f(e   P ii MLE 1  

In (1), fi  D, N is the size of sequence, and Count(fi) is the 
number of occurrences of fi in the sequence.  
The proportion of times a certain event fi occurs is called the 
relative frequency of the event. In the MLE model, we compute 
(predict) the relative frequency of each new event based on the 
preceding sequence. Empirically for our data we observed if one 
performs a large number of trials, the relative frequency (for 
each file) tends to stabilize around some number.  
In our experiments, instead of definition (1), we computed our 
MLE probability distributions [1] using this formula: 

)    ( d)       ) / (N )  ( Count(f)  f(E P iiMLE 21  

In (2), fi  D, N is the size of sequence, Count(fi) is the number 
of occurrences of fi and d is the size of domain D.  
We use this equation because equation (1) has two 
computational problems. The first problem is that it implicitly 
assigns a zero probability to elements of domain that have not 
been observed in the sequence. This means it will assign a zero 
probability to any sequence containing a previously unseen 
element. The second problem is that it does not distinguish 
between different levels of certainty based on the amount of 
evidence we have seen. One solution is to assign a small 
probability to each possible observation at the start. We do this 
by adding a small number (we use l) to the count of each 
outcome to get the estimation formula. This technique, using 
value 1, is called Laplace estimation [1]. If we never see a token 
of a type f in a corpus of size N and domain size d, the 
probability estimate of a token of f occurring will be 1/(N+d). 
For the second problem, using Laplace formula, our prior 
knowledge that there is D different types of events makes our 
estimate stay close to the uniform distribution [1].  

3.2 Reflexive Exponential Decay (RED) 
Model  
Our second model relies on the idea that when a change is 
observed in a file, it is likely that more changes will be observed 
in that file, but that this effect decreases (decays) with time. We 
are given a sequence of events called e1, e2 �… en, occurring 
respectively at monotonically increasing times t1, t2 �… tn. We 
assume that events probabilistically predict events, e.g., bug 
fixes predict bug fixes. By analogy, yesterday�’s weather is a 
good predictor of today�’s weather.  
We postulate that the predictive rate of bugs induced by any 
event decays exponentially. We call this model reflexive 
because each event in turn predicts more events.  More 
generally, we call it the reflexive exponential decay (RED) 
model.  A particular event occurring at time ti on the file fj, 
implies (predicts) a future frequency rate Rt(j) for that file at 
future time t.  Our model defines Rt(j)   as follows: 

i

)/hi(t-t)ik(t-t
t

 tt)/h  and  ( -  k   where   
)    (                    )/ I ( I e(j) R

2ln
321  

In formula (3), h is the half life (measured typically in months) 
and I is the �“impact�” of an event (measured typically in events 
per month). This means that if in the sequence of events, ei 
happens at time ti and ei is a modification of file fj, for all time t 
> ti, the predicted incremental frequency for file will be Rj(t). 
A larger half life h means that the effects of a change last 
longer. Figure 5 shows Rt(j) for different half lives and with 
impact of I = 1 and ti = 0. 
Based on Rt(j)  for each event on file fj, we define the RED 
model as the summation of the effects all (historical) events 
happening to each file.  
We now formalize the RED frequency model. Suppose that the 
sequence of events, e0, e1, e2, .., el has happened on file fj up 
time t.  Then RED predicts that the future frequency of changes 
to this file will be: 

)   (                                        tfor all t
    I e ...  I e  I e I e(j) R

l

)lk(t-t)k(t-t)k(t-t)k(t-t
t

4

210
 

Figure 6 shows how the effect of each event is added to the 
previous ones for a specific file.  In the figure, specific file fj has 
been observed to change at times 0, 5 and 15; the individual 
exponentially decaying predictive effects of these three events 
are shown as the three lower curves.  The cumulative effect of 
these first two of these (from times 0 and 5) is shown as another 
curve.  Then the effect of all three of these is shown by yet 
another (the highest) curve. 
 
RED Distribution Model 
We will now convert our RED model so that it predicts 
probability distribution rather than frequency.  Given a sequence 
of events: e0, e1, e2, .., em, having Rt(j)  for all files j = 1..n, we 
can define the distribution of RED at time t as follows:  

)        (t     for t
(j) R

(i) R)  f (eRED m

..nj
t

t
imt 5

1

1  
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Figure 5. Exponential decay for different half lives.   

3.3 RED Co-Change (REDCC) Model 
Our third model is an enhanced version of RED.  When each 
event occurs we update the probability not only for the changed 
file but also for the co-changed files. There are several different 
approaches for concluding that (or defining that) the files 
change (co-change) together during software development.  
Developers commonly modify files together (co-change them) 
to introduce new features or fix bugs.  Developers should ensure 
that when one file is changed, other related files in the software 
system are updated to be consistent with the modifications.  We 
use a definition of co-change that is inspired by the literature 
[8]. If file f1 and f2 changed together (on the same day) in 
previous change sets, then they are candidates to be considered 
as co-changed files. We will define that co-change files are 
those sets of files which have changed on the same day in the 
past at least 3 times within the preceding 7 days. We now define 
the RED Co-Change (REDCC) model.  We assume that at time 
t, the sequence of events, e0, e1, e2, .., em has happened on file fi  
or on the co-change files of fi up to this time.   

)        ()k(t-t I e ... )k(t-t I e )k(t-tI e(j)tREDCC m 610
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Figure 6. Reflexive exponential decay for a file.   
 
Using REDCCt(j) frequency model, we convert it to the 
probability model REDCCt(em+1=fi) in the same way we 
converted the RED frequency model to a probability model.   

4. EVALUATION OF PREDICTION 
MODELS 
In this section we present an information theoretic approach to 
quantify the goodness or fitness of a guessed probability g (g is 
a prediction model) compared to the actual probability p. Our 
approach uses entropy concepts to evaluate prediction models.  
Our goal is to compare these predictive models (distributions) to 
see how good they are. By �“good�” we mean how close they are 
to the true distributions of the events. It also could mean that 
how well they predict the occurrence of the next event. The 
approach we take is well known in Natural Language Processing 
(NLP) area, where a sequence of words in language is called 
corpus, but to our knowledge has not been used in the field of 
Mining Software Repositories. NLP uses information theory to 
find the distance between prediction models and actual 
distribution of corpus [11]. 

4.1 Entropy and Cross Entropy 
Before introducing our information theoretic approach, we will 
review some related concepts. Information theory techniques 
define the amount of information in a message. The theory 
measures the amount of uncertainty/entropy in a distribution. 
Shannon entropy [11], given probability p(x), is defined as: 
H(p) =  -  p(x)log p(x)  
Larger values of H(p) imply that more bits are needed for 
coding messages.  
There is a related concept called cross entropy which allows us 
to compare two probability functions. (Cross entropy is closely 
related to Kullback-Leibler divergence [11].)  The cross entropy 
between two probability distributions measures the overall 
difference between the two distributions p and m and is defined 
as: 
H(p,m) = -  p(x)log m(x)  
Where p(x) is the true distribution and m(x) the model 
distribution. 
The cross entropy is minimal when p and m are identical, in 
which case it reduces to simply H(p). The closer the cross 
entropy is to entropy proper, the better m is an approximation of 
p. If we have two models m1 and m2, if H(p, m1) < H(p, m2) then 
m1 is a closer approximation to distribution to p. 
This approach seems to require that we know p, the actual 
distribution of data, which unfortunately we do not know. One 
of the central problems we face in using probability models is 
obtaining the actual distribution p(x) of data. The true 
distributions are not known, yet we want to estimate predictive 
models and validate them using the existing data. 
Here there is a paradox: if we had p(x) in advance, we wouldn�’t 
need to make any model for estimating p(x).  

4.2 Corpus Cross Entropy  
We solve this problem with using corpus cross entropy (CCE). 
Given a sequence c with of length N consisting of events e1�…eN, 
the corpus cross entropy of a probability function m is defined 
as follows:  
Hc(m) = -(1/N)  log m(ei)  
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Figure 7. Evaluation of 3 models based on Hit Ratio of Top Ten List, with varying size of list. 
 
It is straightforward to prove that corpus cross entropy Hc(m) 
approaches cross entropy H(p,m) as N approaches infinity, 
given that p is the true distribution of corpus c and given that p 
is stationary. We can compute Hc(m), as an approximation to 
H(p,m), even though we do not know distribution p.  As is done 
in NPL literature [11], we assume that given two models m1 and 
m2 we can compare Hc(m1) and Hc(m2) to determine which of 
m1 and m2 is the better model, even though we do not know the 
true distribution p, given that p is reasonably stationary.  That is, 
when Hc(m1) < Hc(m2)  we conclude that m1 is a closer 
distribution to the true distribution and hence is a better model. 

5. EMPIRICAL STUDIES 
In this section we evaluate our three proposed prediction models 
(MLE, RED and REDCC) empirically, using two approaches, 
for six large open source systems. Table 1 summarizes the 
details of the software systems we studied. Due to space 
limitation we will only shown the results for two systems 
(Koffice and NetBSD). The other systems had similar behavior. 

5.1 Top Ten List evaluation 
For evaluating the quality of our three models, first we use the 
Top Ten List [8] approach.  This approach evaluates which 
model predicts more accurately. 
In this approach, the model predicts a list of the 10 files (more 
generally, a list of n files) that are most likely to be changed 
next. A new list is generated for each new event.  
Given a predicted distribution m for the next event, we create 
the corresponding Top Ten List for that upcoming event by 
picking the ten (or n) files with the highest probability according 
to m. 
With the occurrence of each event, there is a change to a file, 
call it file fi.  We record whether file fi is in the event�’s Top Ten 
List.   We define the Hit Ratio as the fraction of events in which 
file fi was observed to be in its Top Ten List.  Models with 
higher Hit Ratios are considered to be better models. 
We applied the Top Ten List approach to evaluate our three 
proposed models, for all the studied system; see Figure 7 for the 
results for two of these systems: Koffice and OpenBSD.  
(Results for the other studied systems are comparable.)  As can 
be seen, for both systems, REDCC and RED have very similar 
results, with REDCC being slightly superior.  By contrast, 
MLE�’s results are considerably worse.  In other words, the Top 

Ten List approach evaluates REDCC is slightly better than 
RED, and both of these considerable better than MLE. 
As can be seen in Figure 7, as the size of list increases, we have 
a higher hit ratio. Interestingly, using REDCC or RED model, 
when we use 20 percent of total files in the system, the hit ratio 
is almost 80 percent.  

5.2 Information theoretic evaluation 
We also applied the information theoretic approach to compare 
our three prediction models. Due to space limitations, we only 
present the result for one of the studied system, Postgres.  The 
results for the other systems are similar.   
Using historical Postgres data, we developed instances of our 
three models: MLE, RED and REDCC. To develop the MLE 
model, we used the first 10000 events and kept it fixed for the 
remaining corpus.  
Figure 8 shows the corpus cross entropy of our three predictive 
models when applied to Postgres. As it can be seen in the figure, 
REDCC has the lowest corpus cross entropy which means its 
distribution is the closest to the actual distribution of the data. 
The next closest (see middle curve in Figure 9) is RED, and the 
worst (top curve) is MLE.  Note that this ordering is the same 
that we observed when our evaluations were based on the Top 
Ten List. 
As can be seen in Figure 8, as the size of corpus increases the 
MLE distribution gets farther from the real distribution of data 
but for two other models, RED and REDCC, the opposite is 
true. This suggests that the RED and REDCC models benefit by 
updating their distributions based on the events in the corpus as 
time passes. 
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Figure 8. Evaluation of 3 models using corpus cross 
entropy on Postgres.  
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6. CONCLUSION  
We developed three models (MLE, RED and REDCC) for 
predicting future modification of files based on available change 
histories of software. We proposed a rigorous approach for 
evaluating such predictive models. This approach has been used 
in Natural Language Processing, but not in Mining Software 
Repositories, as far as we know. This is an information theoretic 
approach in that the closeness of a predictive model distribution 
to an actual but unknown probability distribution of the system 
is measured using cross entropy. We evaluated our proposed 
prediction models empirically using two approaches for six 
large open source systems. First we used the Top Ten List [8] 
approach to see which model predicts more accurately. Using 
this approach we showed that the REDCC model works best of 
our three models. Then using our information theoretic 
evaluation approach, we observe that the REDCC model again 
has the distribution that is closest to the actual distribution for 
all the studied systems. An advantage of our information 
theoretic approach over the Top Ten List approach is that using 
our approach we know quantitatively, as measured by cross 
entropy, how much better or worse is the prediction model 
compared to ideal result. 
Our hope is that our approach can be used to help better predict 
future changes and bugs, based on the history of software. Our 
approach also can be used by researchers who have developed 
new prediction models to evaluate them using a information 
theoretic approach. 
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