

Information Theoretic Evaluation of Change
Prediction Models for Large-Scale Software

Mina Askari
School of Computer Science

University of Waterloo
Waterloo, Canada

maskari@uwaterloo.ca

Ric Holt
School of Computer Science

University of Waterloo
Waterloo, Canada

holt@uwaterloo.ca

ABSTRACT
In this paper, we analyze the data extracted from several open
source software repositories. We observe that the change data
follows a Zipf distribution. Based on the extracted data, we
then develop three probabilistic models to predict which files
will have changes or bugs. The first model is Maximum
Likelihood Estimation (MLE), which simply counts the number
of events, i.e., changes or bugs, that happen to each file and
normalizes the counts to compute a probability distribution. The
second model is Reflexive Exponential Decay (RED) in which
we postulate that the predictive rate of modification in a file is
incremented by any modification to that file and decays
exponentially. The third model is called RED-Co-Change. With
each modification to a given file, the RED-Co-Change model
not only increments its predictive rate, but also increments the
rate for other files that are related to the given file through
previous co-changes. We then present an information-theoretic
approach to evaluate the performance of different prediction
models. In this approach, the closeness of model distribution to
the actual unknown probability distribution of the system is
measured using cross entropy. We evaluate our prediction
models empirically using the proposed information-theoretic
approach for six large open source systems. Based on this
evaluation, we observe that of our three prediction models, the
RED-Co-Change model predicts the distribution that is closest
to the actual distribution for all the studied systems.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement- Version control
D.2.8 [Software Engineering]: Metrics- Performance
measures, Process metrics
General Terms
Performance, Reliability, Theory

Keywords
Prediction Models, Evaluation approach, Information Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR�’06, May 22�–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

1. INTRODUCTION
Software systems are continuously being changed to adapt to
meet the needs of their users or to correct the faults appearing in
systems during development or after deployment. There has
been extensive research on new processes and approaches for
developing software systems to minimize these new
modifications. The idea is that during software development by
following some specific principles, the probability of certain
kinds of modifications can be decreased. Despite this progress,
new changes and bugs are inevitable during software
development. However, if software developers were able to
forecast the occurrence of changes and bugs then they could
mitigate their impact. Therefore, developing accurate techniques
to predict the future behavior of changes and bugs can be
valuable for software development and maintenance.
The idea for predicting which files/subsystems are most
susceptible to having a fault in the near future is a well-known
idea. There exist several prediction models [5][6][8][9][10][14]
and more are emerging. However, many of these fault prediction
models have not been evaluated in practice and some of them
are not applicable to large-scale software systems. The majority
of fault prediction models are applicable to deployed systems
only. The general approach for evaluating these models is to run
the system and collect the observed information during its
execution and then compare it with the results predicted by the
models [18]. The problem is that too often these models are not
general and hence, they are not applicable to different software
systems. In many cases, because the models measure different
metrics, the results are not comparable [18]. There are many
questions with respect to the validity of the underlying
assumptions, accuracy, and applicability of software prediction
models. In this paper, our goal is to contribute toward more
general and realistic assessment and prediction of software
modifications based on theoretical and empirical studies. We are
interested in methods and models that have two properties. First,
they use data collected during development process and second,
their distance from the actual but unknown distribution of the
collected data can be measured. Our goal is twofold: first, to
develop prediction models driven by software repositories and
second, evaluate and compare different models using a
mathematical approach. We use historical records, from source
control repositories of large software systems, to develop
prediction models and to estimate how much information is
captured by the models.
Figure 1 illustrates the problem we are trying to solve. Suppose
we have a list of all the events that have so far occurred on
different files of a software system during development process.

126

These events are file changes to fix bugs, or to add new features
or change existing features. We have extracted these events
from the history of the software. For example f21 shows that one
modification has happened on file 21 at the specific time (see
Figure 1). We ask this question: To what degree are these
changes unpredictable? More particularly, what will be the
uncertainty of the next sample, if all past samples are known? In
some cases, it may be impossible to say anything about the next
sample regardless of how many past samples are already known.
In other cases, the process may be much less uncertain about the
next sample when given the history of the changes. Having
extracted historical data, we want to determine how much
information this data provides us about the future. Our results
indicate that CVS log data contains information about the past
that can help to predict the future. The questions include: How
much information is buried in the CVS logs and how can we
capture this information? How good are the prediction models
that use this information to predict the future?

Figure 1. Does past predict future?

After introducing related work in Section 1.1, the rest of the
paper is organized as follows. Section 2 presents the techniques
and approaches we used to perform different experiments in
order to analyze the data extracted from several open source
software repositories. In Section 3, we present our three
prediction models and describe the steps involved in developing
the models. In Section 4, we present an information theoretic
approach for evaluation prediction models. In Section 5 presents
the results of using two approaches for evaluating our proposed
prediction models: the Top Ten List approach proposed by
Hassan et al. [8] and our information theory based approach.
Finally, Section 6 concludes the paper and discusses possible
future works.

1.1 Related Work
Many researchers [2][5][6][8][9][16][17] in software
development area have realized the value of historical data and
have used them in their research ranging from software design
to software understanding, software maintenance, development
process and many more areas.
There is considerable research on developing tools to recover
such historical data. Hassan et al. [7] developed C-REX tool, an
evolutionary code extractor, which recovers information from
source control repositories. Zimmermann et al. [19] used version
repositories to determine co-change clusters. They applied data
mining to version histories in order to guide programmers

through related changes. For detecting another kind of co-
changes Gall et al. [5] used software repositories. They
uncovered the dependencies and interrelations between classes
and modules (logical dependencies) which can be used by
developers in maintenance phase of a system.
Graves et al. [6] showed that there is a relation between the
number of changes a subsystem has with the future faults in that
subsystem. Hassan et al. [8] presented various heuristics using
historic version control data to create the Top Ten List. Top Ten
List highlights to managers the ten most susceptible subsystems
to have a fault. They also developed techniques to measure the
performance of these heuristics.
Mockus et al. [12] studied a large legacy system to test the
hypothesis that historic version control data can be used to
determine the purpose of software changes and to understand
and predict the state of a software project [13]. Khoshgoftaar et
al. [9][10] used process history to predict software reliability
and to show that the number of prior modifications to a file is a
good predictor of its future faults. Eick et al. [4] presented
visualization techniques to explore change data to help
engineers understand and manage the software change process.
Ostrand, et al. [14] suggested a model to predict the number of
faults for a large industrial inventory system based on the
history of the previous releases.
Our approach takes guidance from this previous work, but is
notably different by suggesting new prediction models and by
using an information theoretic approach to measure the
effectiveness of such models.

2. CHARACTERISTICS OF THE DATA
The prediction models and the evaluation methods presented in
this paper are based on change history data. Change data is the
information generated during development process and can be
obtained through mining the repositories of the software. We
began by analyzing the extracted data to understand its
statistical properties. In particular, we observed that history data
has Zipf distribution [20].

2.1 Studied Systems
To perform our study we used several CVS logs of open source
software systems. Table 1 summarizes the details of the
software systems we studied. The oldest system is over ten
years old and the youngest system is five years old. We tried to
choose the applications from different domains and different
sizes. We were looking for any kind of change and bug which
happens to different files of a system. The process of acquiring
such specific data is very challenging, since CVS logs are
mainly designed as record keeping repositories and commits
aren�’t atomic and large amount of data stored in these
repositories complicates the data extracting process. For
analyzing data and creating prediction models and comparing
them based on the data, our main concern was to perform our
studies on the data of several CVS logs software systems in a
standard format that is easier to process and not developing
tools that automatically recover data from these repositories. So
we obtained and used the data which were extracted from these
CVS logs by tools developed by Hassan et al. [7]. This let us
concentrate on analyzing the extracted data instead of spending
time developing tools to recover the data.

127

Table 1. Number of events available for different systems
Application

Name
Duration
(Month)

Total
Events

Bug or
Changes

Total
Files

OpenBSD 88 80354 67149 7065

FreeBSD 115 126432 101252 5272

KDE 70 93204 77994 4063

Koffice 58 92944 73409 6312

NetBSD 119 239628 131307 11760

Postgres 77 41175 26510 1468

2.2 Zipf�’s Law
We started by counting the number of modifications which
happened for each file during the development process. Based
on the history of the development, if we count how often each
file is modified, and then list the files in order of the frequency
of occurrence, we can explore the relationship between the
frequency of a file and its position in the list, known as its rank.
Figure 2 illustrates the number of modifications for each file for
different systems we studied. Different systems have different
number of files. Therefore, to compare all the studied systems in
a single plot, we used the percentage of files and percentage of
activities for each file in Figures 2 to 4.
As it can be seen from the figure 2, there are few files with high
frequency of changes but many files with very low number of
changes. It also can be seen in the figure, these frequencies
follow a similar pattern in all studied systems. This behavior
indicates that the change data follows the general form the
Pareto (or 80-20) law [15] and Zipf's law [20].

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
Percentage of the Files

Pe
rc

en
ta

ge
 a

t t
ha

t F
re

qu
en

cy

Postgres

KDE

OpenBSD

FreeBSD

Koffice

NetBSD

Figure 2. Change data follows Zipf�’s law.

The Pareto law, in its generalized form, states that 80% of the
objectives - or more generally the effects - are achieved with
20% of the means. In order to show that there is 80-20 law in
our data, we plotted the cumulative distributions of the file
frequencies in Figure 3. It can be seen from the figure that
almost 20% of the files in the systems have (almost) 80% of
activities during development. To show that Zipf�’s law holds for
the data, we plotted the log-log scale of the cumulative
frequency distributions; see Figure 4. It can be seen that the

points are close to a single straight line thereby confirming that
the data approximates Zipf�’s law [20].

3. CHANGE PREDICTION MODELS
The prediction of future modifications in a large software
system is an important part in software evolution. Since most
prediction models in past studies have been constructed and
used for individual systems, it has not been practically
investigated whether a prediction model based on one system
can also predict faults and changes accurately in other systems.
Our expectation was that if we could build a model applicable to
different range of systems based on the information which is
generated during development process, e.g. CVS logs, it would
be useful for software developers. In this Section we will show
several prediction models which can use the CVS logs to predict
the future bugs and changes in any arbitrary system. These
models are generally in form of probability models.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percentage of the Files

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Postgres

KDE

OpenBSD

FreeBSD

Koffice

NetBSD

Figure 3. Cumulative frequency distributions.

1

10

100

1 10 100

Log-Percentage of the Files

Lo
g-

C
um

ul
at

iv
e

Fr
eq

ue
nc

y Postgres

KDE

OpenBSD

FreeBSD

Koffice

NetBSD

Figure 4. Log-log scale of cumulative distributions.

After extracting the changes and bugs that occurred in the
various files of a system during development, we created a
sequence of events showing file changes to fix bugs or to add
features. Having this sequence of events our goal is to predict
future comparable events. There are many files in the systems

128

we studied, ranging from 1000 to 20000 files. We wanted to
construct a probabilistic model of this process, in other words,
to define a probabilistic model that characterizes the result of
the next element in the sequence. We assume that we know that
the possible value space, i.e., the Domain D (i.e., sample space)
for event e (considered as a random variable). In our work, D is
the set of files in the system. We denote the elements of this
Domain as f1, f2... fm. Our goal is to define a good probability
model to give the probability that the ith (i.e., next) element in
the sequence will have a particular value (will be a particular
file); in other words for finding the probability distribution of
random variable ei, what we need to do is to decide on the form
of the underlying model of the sequence of events. Ideally this
would be a conditional probability function of form P(ei | e1, e2,
...,ei-1). Our work is complicated by the fact that, in general, a
new probability function is needed for each ei. Based on this
approach, we will now present three probabilistic models.

3.1 Most Likely Estimation (MLE) Model
Our first model, maximum likelihood estimate (MLE), simply
uses the counts from the sequence to estimate the distribution.

) () / N Count(f) f(e P ii MLE 1

In (1), fi D, N is the size of sequence, and Count(fi) is the
number of occurrences of fi in the sequence.
The proportion of times a certain event fi occurs is called the
relative frequency of the event. In the MLE model, we compute
(predict) the relative frequency of each new event based on the
preceding sequence. Empirically for our data we observed if one
performs a large number of trials, the relative frequency (for
each file) tends to stabilize around some number.
In our experiments, instead of definition (1), we computed our
MLE probability distributions [1] using this formula:

) (d)) / (N) (Count(f) f(E P iiMLE 21

In (2), fi D, N is the size of sequence, Count(fi) is the number
of occurrences of fi and d is the size of domain D.
We use this equation because equation (1) has two
computational problems. The first problem is that it implicitly
assigns a zero probability to elements of domain that have not
been observed in the sequence. This means it will assign a zero
probability to any sequence containing a previously unseen
element. The second problem is that it does not distinguish
between different levels of certainty based on the amount of
evidence we have seen. One solution is to assign a small
probability to each possible observation at the start. We do this
by adding a small number (we use l) to the count of each
outcome to get the estimation formula. This technique, using
value 1, is called Laplace estimation [1]. If we never see a token
of a type f in a corpus of size N and domain size d, the
probability estimate of a token of f occurring will be 1/(N+d).
For the second problem, using Laplace formula, our prior
knowledge that there is D different types of events makes our
estimate stay close to the uniform distribution [1].

3.2 Reflexive Exponential Decay (RED)
Model
Our second model relies on the idea that when a change is
observed in a file, it is likely that more changes will be observed
in that file, but that this effect decreases (decays) with time. We
are given a sequence of events called e1, e2 �… en, occurring
respectively at monotonically increasing times t1, t2 �… tn. We
assume that events probabilistically predict events, e.g., bug
fixes predict bug fixes. By analogy, yesterday�’s weather is a
good predictor of today�’s weather.
We postulate that the predictive rate of bugs induced by any
event decays exponentially. We call this model reflexive
because each event in turn predicts more events. More
generally, we call it the reflexive exponential decay (RED)
model. A particular event occurring at time ti on the file fj,
implies (predicts) a future frequency rate Rt(j) for that file at
future time t. Our model defines Rt(j) as follows:

i

)/hi(t-t)ik(t-t
t

 tt)/h and (- k where
) ()/ I (I e(j) R

2ln
321

In formula (3), h is the half life (measured typically in months)
and I is the �“impact�” of an event (measured typically in events
per month). This means that if in the sequence of events, ei
happens at time ti and ei is a modification of file fj, for all time t
> ti, the predicted incremental frequency for file will be Rj(t).
A larger half life h means that the effects of a change last
longer. Figure 5 shows Rt(j) for different half lives and with
impact of I = 1 and ti = 0.
Based on Rt(j) for each event on file fj, we define the RED
model as the summation of the effects all (historical) events
happening to each file.
We now formalize the RED frequency model. Suppose that the
sequence of events, e0, e1, e2, .., el has happened on file fj up
time t. Then RED predicts that the future frequency of changes
to this file will be:

) (tfor all t
 I e ... I e I e I e(j) R

l

)lk(t-t)k(t-t)k(t-t)k(t-t
t

4

210

Figure 6 shows how the effect of each event is added to the
previous ones for a specific file. In the figure, specific file fj has
been observed to change at times 0, 5 and 15; the individual
exponentially decaying predictive effects of these three events
are shown as the three lower curves. The cumulative effect of
these first two of these (from times 0 and 5) is shown as another
curve. Then the effect of all three of these is shown by yet
another (the highest) curve.

RED Distribution Model
We will now convert our RED model so that it predicts
probability distribution rather than frequency. Given a sequence
of events: e0, e1, e2, .., em, having Rt(j) for all files j = 1..n, we
can define the distribution of RED at time t as follows:

) (t for t
(j) R

(i) R) f (eRED m

..nj
t

t
imt 5

1

1

129

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

Time (month)

Pr
ed

ic
te

d
Fr

eq
ue

nc
y

1 month
2 month
3 month
6 month

Figure 5. Exponential decay for different half lives.

3.3 RED Co-Change (REDCC) Model
Our third model is an enhanced version of RED. When each
event occurs we update the probability not only for the changed
file but also for the co-changed files. There are several different
approaches for concluding that (or defining that) the files
change (co-change) together during software development.
Developers commonly modify files together (co-change them)
to introduce new features or fix bugs. Developers should ensure
that when one file is changed, other related files in the software
system are updated to be consistent with the modifications. We
use a definition of co-change that is inspired by the literature
[8]. If file f1 and f2 changed together (on the same day) in
previous change sets, then they are candidates to be considered
as co-changed files. We will define that co-change files are
those sets of files which have changed on the same day in the
past at least 3 times within the preceding 7 days. We now define
the RED Co-Change (REDCC) model. We assume that at time
t, the sequence of events, e0, e1, e2, .., em has happened on file fi
or on the co-change files of fi up to this time.

) ()k(t-t I e ...)k(t-t I e)k(t-tI e(j)tREDCC m 610

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Time

R
ef

le
xi

ve
 E

xp
on

en
tia

l D
ec

ay Effect of change #1

Effect of change #2

Effect of change #3

Effect of changes #1 & #2

Effect of changes #1, #2 & #3

Figure 6. Reflexive exponential decay for a file.

Using REDCCt(j) frequency model, we convert it to the
probability model REDCCt(em+1=fi) in the same way we
converted the RED frequency model to a probability model.

4. EVALUATION OF PREDICTION
MODELS
In this section we present an information theoretic approach to
quantify the goodness or fitness of a guessed probability g (g is
a prediction model) compared to the actual probability p. Our
approach uses entropy concepts to evaluate prediction models.
Our goal is to compare these predictive models (distributions) to
see how good they are. By �“good�” we mean how close they are
to the true distributions of the events. It also could mean that
how well they predict the occurrence of the next event. The
approach we take is well known in Natural Language Processing
(NLP) area, where a sequence of words in language is called
corpus, but to our knowledge has not been used in the field of
Mining Software Repositories. NLP uses information theory to
find the distance between prediction models and actual
distribution of corpus [11].

4.1 Entropy and Cross Entropy
Before introducing our information theoretic approach, we will
review some related concepts. Information theory techniques
define the amount of information in a message. The theory
measures the amount of uncertainty/entropy in a distribution.
Shannon entropy [11], given probability p(x), is defined as:
H(p) = - p(x)log p(x)
Larger values of H(p) imply that more bits are needed for
coding messages.
There is a related concept called cross entropy which allows us
to compare two probability functions. (Cross entropy is closely
related to Kullback-Leibler divergence [11].) The cross entropy
between two probability distributions measures the overall
difference between the two distributions p and m and is defined
as:
H(p,m) = - p(x)log m(x)
Where p(x) is the true distribution and m(x) the model
distribution.
The cross entropy is minimal when p and m are identical, in
which case it reduces to simply H(p). The closer the cross
entropy is to entropy proper, the better m is an approximation of
p. If we have two models m1 and m2, if H(p, m1) < H(p, m2) then
m1 is a closer approximation to distribution to p.
This approach seems to require that we know p, the actual
distribution of data, which unfortunately we do not know. One
of the central problems we face in using probability models is
obtaining the actual distribution p(x) of data. The true
distributions are not known, yet we want to estimate predictive
models and validate them using the existing data.
Here there is a paradox: if we had p(x) in advance, we wouldn�’t
need to make any model for estimating p(x).

4.2 Corpus Cross Entropy
We solve this problem with using corpus cross entropy (CCE).
Given a sequence c with of length N consisting of events e1�…eN,
the corpus cross entropy of a probability function m is defined
as follows:
Hc(m) = -(1/N) log m(ei)

130

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
List size (Percentage of total files)

H
it

R
at

io

Koffice-RED

Koffice-MLE

Koffice-RED+CoChange

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

List size (Percentage of total files)

H
it

R
at

io
 OpenBSD-RED

OpenBSD-MLE

OpenBSD-REDCC

Figure 7. Evaluation of 3 models based on Hit Ratio of Top Ten List, with varying size of list.

It is straightforward to prove that corpus cross entropy Hc(m)
approaches cross entropy H(p,m) as N approaches infinity,
given that p is the true distribution of corpus c and given that p
is stationary. We can compute Hc(m), as an approximation to
H(p,m), even though we do not know distribution p. As is done
in NPL literature [11], we assume that given two models m1 and
m2 we can compare Hc(m1) and Hc(m2) to determine which of
m1 and m2 is the better model, even though we do not know the
true distribution p, given that p is reasonably stationary. That is,
when Hc(m1) < Hc(m2) we conclude that m1 is a closer
distribution to the true distribution and hence is a better model.

5. EMPIRICAL STUDIES
In this section we evaluate our three proposed prediction models
(MLE, RED and REDCC) empirically, using two approaches,
for six large open source systems. Table 1 summarizes the
details of the software systems we studied. Due to space
limitation we will only shown the results for two systems
(Koffice and NetBSD). The other systems had similar behavior.

5.1 Top Ten List evaluation
For evaluating the quality of our three models, first we use the
Top Ten List [8] approach. This approach evaluates which
model predicts more accurately.
In this approach, the model predicts a list of the 10 files (more
generally, a list of n files) that are most likely to be changed
next. A new list is generated for each new event.
Given a predicted distribution m for the next event, we create
the corresponding Top Ten List for that upcoming event by
picking the ten (or n) files with the highest probability according
to m.
With the occurrence of each event, there is a change to a file,
call it file fi. We record whether file fi is in the event�’s Top Ten
List. We define the Hit Ratio as the fraction of events in which
file fi was observed to be in its Top Ten List. Models with
higher Hit Ratios are considered to be better models.
We applied the Top Ten List approach to evaluate our three
proposed models, for all the studied system; see Figure 7 for the
results for two of these systems: Koffice and OpenBSD.
(Results for the other studied systems are comparable.) As can
be seen, for both systems, REDCC and RED have very similar
results, with REDCC being slightly superior. By contrast,
MLE�’s results are considerably worse. In other words, the Top

Ten List approach evaluates REDCC is slightly better than
RED, and both of these considerable better than MLE.
As can be seen in Figure 7, as the size of list increases, we have
a higher hit ratio. Interestingly, using REDCC or RED model,
when we use 20 percent of total files in the system, the hit ratio
is almost 80 percent.

5.2 Information theoretic evaluation
We also applied the information theoretic approach to compare
our three prediction models. Due to space limitations, we only
present the result for one of the studied system, Postgres. The
results for the other systems are similar.
Using historical Postgres data, we developed instances of our
three models: MLE, RED and REDCC. To develop the MLE
model, we used the first 10000 events and kept it fixed for the
remaining corpus.
Figure 8 shows the corpus cross entropy of our three predictive
models when applied to Postgres. As it can be seen in the figure,
REDCC has the lowest corpus cross entropy which means its
distribution is the closest to the actual distribution of the data.
The next closest (see middle curve in Figure 9) is RED, and the
worst (top curve) is MLE. Note that this ordering is the same
that we observed when our evaluations were based on the Top
Ten List.
As can be seen in Figure 8, as the size of corpus increases the
MLE distribution gets farther from the real distribution of data
but for two other models, RED and REDCC, the opposite is
true. This suggests that the RED and REDCC models benefit by
updating their distributions based on the events in the corpus as
time passes.

8
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
10

10000 12000 14000 16000 18000 20000 22000 24000

Size of corpus

C
or

pu
s

cr
os

s
en

tro
py

REDCC (bottom curve)
RED (middle curve)
MLE (top curve)

Figure 8. Evaluation of 3 models using corpus cross
entropy on Postgres.

131

6. CONCLUSION
We developed three models (MLE, RED and REDCC) for
predicting future modification of files based on available change
histories of software. We proposed a rigorous approach for
evaluating such predictive models. This approach has been used
in Natural Language Processing, but not in Mining Software
Repositories, as far as we know. This is an information theoretic
approach in that the closeness of a predictive model distribution
to an actual but unknown probability distribution of the system
is measured using cross entropy. We evaluated our proposed
prediction models empirically using two approaches for six
large open source systems. First we used the Top Ten List [8]
approach to see which model predicts more accurately. Using
this approach we showed that the REDCC model works best of
our three models. Then using our information theoretic
evaluation approach, we observe that the REDCC model again
has the distribution that is closest to the actual distribution for
all the studied systems. An advantage of our information
theoretic approach over the Top Ten List approach is that using
our approach we know quantitatively, as measured by cross
entropy, how much better or worse is the prediction model
compared to ideal result.
Our hope is that our approach can be used to help better predict
future changes and bugs, based on the history of software. Our
approach also can be used by researchers who have developed
new prediction models to evaluate them using a information
theoretic approach.

7. ACKNOWLEDGMENT
The authors would like to thank Ahmed Hassan. This paper
would not have been possible without his generous help and his
data. We also would like to thank the referees for their
extremely helpful suggestions.

8. REFERENCES
[1] Allen, J. F. Using Entropy for Evaluating and Comparing

Probability Distributions, available at:
http://www.cs.rochester.edu/u/james/CSC248/Lec6.pdf

[2] Basili, V. R., and Perricone, B. Software errors and
complexity: An empirical investigation. Communications
of the ACM, 27(1):42 �– 52, 1984.

[3] Eick, S. G., Graves, T. L., Karr, A. F., Marron, J.S., and
Mockus, A. Does Code Decay? Assessing the Evidence
from Change Management Data. IEEE Trans. on Software
Engineering, 27(1):1�–12, 2001.

[4] Eick, S.G., Graves, T.L., Karr, A.F., Mockus, A., Schuster,
P. Visualizing Software Changes, IEEE Trans. on Software
Engineering, vol. 28, no. 4, pp. 396-412, April, 2002.

[5] Gall, H., Hajek, K., and Jazayeri, M. Detection of logical
coupling based on product release history. In Proceedings
of the 14th International Conference on Software
Maintenance, Bethesda, Washington D.C., November
1998.

[6] Graves, T. L., Karr, A. F., Marron, J. S. and Siy, H. P.
Predicting fault incidence using software change history.
IEEE Trans. on Software Engineering, 26(7):653�–661,
2000.

[7] Hassan, A. E., Mining Software Repositories to Assist
Developers and Support Managers. PhD Thesis, University
of Waterloo, Ontario, Canada, 2004

[8] Hassan, A. E. and Holt, R. C., The Top Ten List: Dynamic
Fault Prediction, Proceedings of ICSM 2005: International
Conference on Software Maintenance, Budapest, Hungary,
Sept 25-30, 2005.

[9] Khoshgoftaar, T. M., Allen, E. B., Halstead, R., Trio, G. P.
and Flass, R. M. Using Process History to Predict Software
Quality. Computer, 31(4), 1998.

[10] Khoshgoftaar, T. M., Allen, E. B., Jones, W. D., and
Hudepohl, J. P. Data Mining for Predictors of Software
Quality. International Journal of Software Engineering and
Knowledge Engineering, 9(5), 1999.

[11] Manning, C. and Schütze, H. Foundations of Statistical
Natural Language Processing, MIT Press. Cambridge, MA:
May 1999.

[12] Mockus, A. and Votta, L. G. Identifying reasons for
software change using historic databases. In International
Conference on Software Maintenance, pages 120-130, San
Jose, California, October 11-14 2000

[13] Mockus, A., Weiss, D. M., and Zhang, Ping.
Understanding and predicting effort in software projects. In
2003 International Conference on Software Engineering,
pages 274-284, Portland, Oregon, May 3-10 2003. ACM
Press.

[14] Ostrand, T. J., Weyuker, E. J., Bell, R. M. Predicting the
Location and Number of Faults in Large Software Systems.
IEEE Trans. Software Eng. 31(4): 340-355 (2005)

[15] Pareto Law: http://www.it-cortex.com/Pareto_law.htm
[16] Perry, D. E. and Evangelist, W. M. An Empirical Study of

Software Interface Faults �— An Update. In Proceedings of
the 20th Annual Hawaii International Conference on
Systems Sciences, pages 113�–136, Hawaii, USA, January
1987.

[17] Perry, D. E. and Steig, C.S. Software Faults in Evolving a
Large, Real-Time System: a Case Study�’. In Proceedings
of the 4th European Software Engineering Conference,
Garmisch, Germany, September 1993.

[18] Reliability Analysis Center, Introduction to Software
Reliability: A state of the Art Review. Reliability Analysis
Center (RAC), 1996. http://rome.iitri.com/RAC/

[19] Zimmermann, T., Weissgerber, P., Diehl, S., Zeller, A.
Mining Version Histories to Guide Software Changes,
IEEE Trans. on Software Engineering, vol. 31, no. 6, pp.
429-445, June, 2005.

[20] Zipf, G. K. Human Behavior and the Principle of Least
Effort.Addison-Wesley, 1949.

132

