
Are Refactorings Less Error-prone Than Other Changes? ∗

Peter Weißgerber
University of Trier

Computer Science Department
54286 Trier, Germany

weissger@uni-trier.de

Stephan Diehl
University of Trier

Computer Science Department
54286 Trier, Germany
diehl@acm.org

ABSTRACT
Refactorings are program transformations which should pre-
serve the program behavior. Consequently, we expect that
during phases when there are mostly refactorings in the
change history of a system, only few new bugs are intro-
duced. For our case study we analyzed the version histo-
ries of several open source systems and reconstructed the
refactorings performed. Furthermore, we obtained bug re-
ports from various sources depending on the system. Based
on this data we identify phases when the above hypothesis
holds and those when it doesn’t.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.8 [Software Engineering]: Metrics

General Terms
Algorithms, Management, Measurement

Keywords
Refactoring, software evolution, reverse engineering, and re-
engineering

1. INTRODUCTION
Changes to source code can be roughly categorized as bug

fixes, feature extensions, and refactorings. Intuitively, we
expect that feature extensions are more error-prone than
bug fixes or refactorings. By definition, a refactoring should
not alter the program behavior at all and, thus, not intro-
duce any new bugs. Thus, during phases in the program de-
velopment where refactorings prevail, we would expect that
less errors are introduced than in other phases. In this pa-
per we present the results of a first case study which relates

∗(Produces the permission block, and copyright informa-
tion). For use with SIG-ALTERNATE.CLS. Supported by
ACM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06,May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

the percentage of refactorings per day to the ratio of bugs
opened within the next 5 days.

The remainder of this paper is organized as follows: In
Section 2 we describe how we reconstruct refactorings and
other changes from version archives. Then, we explain in
Section 3 how we relate these changes to bugs that have
emerged in the lifetime of a software system. For the case
study in Section 4 we applied our technique to three open-
source systems. Section 5 discusses related work and Section
6 concludes this paper.

2. OBTAINING REFACTORINGS
In this section we briefly explain our technique to extract

refactorings from software version archives such as CVS. The
details of this technique can be found in [5].

A prerequisite for detecting refactorings that occurred
during the evolution of a software system is to collect in-
formation about all changes that have been stored in the
archive. After that, these change can be analyzed to de-
cide if they are a refactoring, part of a refactoring or no
refactoring at all.

As we focus in this paper on the question of whether refac-
torings are less error-prone than other changes, we have to
compute the ratio of refactorings to other changes. In partic-
ular, this allows us to look for those days (or weeks, months,
. . .) which had a high refactoring ratio.

2.1 Recovering Basic Change Information
To recover the changes performed to a software system

during its evolution we analyze the software archive as pre-
sented in [9]. As a result we obtain the following informa-
tion:

• Versions: A version describes one revision of one file
in the software archive, for example the revision 1.2 of
the file src/Main.java. For each version we extract
the following information: the filename and the revi-
sion number, the revision number of the predecessor
version (i.e. the version of the same file that has been
changed to create this particular version), the devel-
oper who checked-in the version into the archive, the
log message and the timestamp of the check-in, the
state of the version (e.g., “dead” for versions that are
not used anymore), the numbers of added, altered, and
deleted lines, and the version text.

• Transactions: A transaction is defined as the set of
versions that have been checked-in into the version
archive by an author in one commit operation. As

112

CVS splits each commit operation containing multiple
versions into separate check-ins for each version, we
use a sliding time window heuristic to recover transac-
tions quite precisely. For every transaction recovered
this way, we additionally store the timestamp of the
start, the length, as well as the committer and the log
message of the transaction.

For our study we use the transactions as a heuristics which
changes have been performed at the same time and, thus,
might be related to each other. For our purpose, we are
not interested in the numbers of the lines that have been
changed, but in the names of the affected code-blocks —
these are classes, fields and methods. Figure 1 gives an
overview of the overall process of computing these numbers
which is described in the following sections.

Software archive

Transactions

Code
blocks

new
altered
deleted

Refactorings-
reconstruction

engine

Versions

Refactoring
candidates

Non-overlapping
disambiguous
refactoring
candidates

! #CB/day

!
#RC/day
#RB/day

Software archive

TransactionsTransactions

Code
blocks
Code
blocks

new
altered
deleted

Refactorings-
reconstruction

engine

VersionsVersions

Refactoring
candidates

Refactoring
candidates

Non-overlapping
disambiguous
refactoring
candidates

Non-overlapping
disambiguous
refactoring
candidates

! #CB/day

!
#RC/day
#RB/day

Figure 1: Computation of Changed Blocks and
Refactorings

2.2 Finding Changed Code Blocks
To determine which code blocks have been changed in

a version with respect to its predecessor, we first have to
compute the blocks which are actually contained in it. For
this we compute for each version v the following sets:

• the set Cv of classes / interfaces (identified by their
fully-qualified class name),

• the set Fv of fields (identified by their signature, con-
sisting of name and type),

• and the set Mv of methods (identified by their signa-
ture consisting of name, parameters, and type).

For each block we additionally store the start line and the
end line. This allows us to reconstruct the nesting of the
symbols in a file, and to distinguish methods that have the
same signature but belong to different classes defined in the
same file.

Let Bv = Cv ∪ Fv ∪ Mv the set of blocks contained in
version v.

Next, for each version v we compare its set of code blocks
with the set of code blocks for the predecessor version v′

(for versions that have no predecessor, we take the empty
version as v′, thus we compare with the empty set). Thus
we compute the following sets:

• Bv − Bv′ : new code blocks, i.e. blocks that only exist
in the newer version

• Bv ∩ Bv′ : common code blocks, i.e. blocks that exist
in both versions

• Bv′ − Bv: deleted code blocks, i.e. blocks that only
exist in the predecessor version

Obviously, every new code block and every deleted code
block is affected by the transition from v′ to v. Moreover,
common code blocks may also have been altered and, thus,
affected by the transition from v′ to v.

In our current implementation we use a light-weight regular-
expression based parser to compute the code blocks for JAVA
files, and perform a textual comparison to find out if a code
block has been altered in the transition from version v′ to its
subsequent version v. Another possibility to get this infor-
mation is to use the ECLIPSE [8] structural compare plug-in
which is able to identify and compare blocks for several file
types and programming languages.

2.3 Refactorings
In the previous section we have explained how we extract

information about changed JAVA code blocks (classes, meth-
ods, field). As we have also recovered transactions we now
know which blocks have been affected by changes performed
at the same time. Next, we want to determine which of these
changes are refactorings, and thus, which of the changed
blocks are affected by refactorings.

Our refactoring reconstruction engine [5] takes the infor-
mation about changed blocks and transactions as input and
yields for each transaction a set of refactorings. We call
these refactorings refactorings candidates, to indicate that
they have possibly been performed in this transaction. In
this paper, we address refactoring kinds for which candidates
can be computed by comparing the signatures and contents
of added and removed code blocks. Other refactoring kinds
require more semantic information like type inferences or
the class hierarchy. For this study we compute refactoring
candidates of the following kinds:

• Move/Rename class/interface c1 =⇒ c2, where c1 is
the old fully-qualified class name and c2 the new one.

• Move field (f, c1) =⇒ (f, c2), where f is the field sig-
nature, c1 is the fully-qualified name of the old class of
the field, and c2 is the fully-qualified name of its new
class.

• Move method (m, c1) =⇒ (m, c2), where m is the
method signature, c1 is the fully-qualified name of the

113

old class of the method, and c2 is the fully-qualified
name of its new class.

• Rename method m1 =⇒ m2, where m1 is the old sig-
nature of the method and m2 the new one.

• Hide/Unhide method m, where m is the signature of
the method that has been hidden respectively unhid-
den.

• Add/Remove parameter to/from method m1 ⇒ m2,
where m1 is the old method signature and m2 the new
method signature.

However, in this paper we are mainly interested in how
many refactorings are performed, but not in the kind of
each refactoring. To count the number of refactorings the
following issues must be considered:

Overlapping refactorings Our refactoring reconstruction
engine both detects refactoring candidates on class
level (move/rename class/interface) as well as on a
fine-grained level (refactorings on fields and methods).
The problem with this is, that refactorings on class
level automatically include refactorings on the fine-
grained level: If a class is moved or renamed, auto-
matically all fields and methods in it are moved to the
new location and, thus, are counted. So if we counted
both refactorings candidates on class level and on the
fine-grained level, we would count some refactorings
twice. To solve this problem, we omit the class-level
refactoring candidates in our count.

Ambiguous refactorings As the refactoring reconstruc-
tion engine only yields refactoring candidates (because
it cannot decide whether a program transformation re-
ally preserves the program behavior or not), for the
same transaction several refactoring candidates may
be suggested that are ambiguous and may exclude each
other. For example, assume that the reconstruction
would suggest the following refactoring candidates:

1. Move Method (m, c1) ⇒ (m, c3).

2. Move Method (m, c1) ⇒ (m, c4).

3. Move Method (m, c1) ⇒ (m, c5).

4. Move Method (m, c2) ⇒ (m, c3).

In this example the first and fourth candidate are am-
biguous concerning the source. If both are taken into
account, this would mean that two different methods
(the one with signature m in class c1 and the one with
the same signature in c3) are moved to the same tar-
get. Although such operations are possible (the meth-
ods may have been identical) it is likely that at most
one of both candidates is correct. A similar problem
occurs with the first three candidates: There are three
alternatives to which class the method has been actu-
ally moved.

Thus, instead of counting the number of all refactoring
candidates, we compute the number of unambiguous
refactoring candidates. A conservative approximation
for this number is to take as many refactoring candi-
dates into account as there are different sources respec-
tively targets, depending on which number is smaller.

In the example above there are two different sources,
namely (m, c1) and (m, c2), and three different targets:
(m, c3), (m, c4), and (m, c5). Thus the number of un-
ambiguous refactoring candidates for this example is 2.

Number of affected blocks The number of affected blocks
of a refactoring only depends on the kind of refactor-
ing: Refactorings of kinds move field, move method,
rename method, add parameter, and remove parame-
ter affect two blocks because they change the signature
of the refactored artifact and, thus, create a new block.
In contrast, refactorings of kind hide/unhide method
do not change the signature of the refactored block
and, therefor, affect only one block.

3. RELATING REFACTORINGS TO BUGS
As the goal of this study is to see whether the common

belief, that refactorings are less risky than other changes, is
really true, we try to estimate how many issues have emerged
because of a change. To this end, we first describe how we
get information about the bugs that appeared in a software
system during its lifetime. Then we describe how we relate
changes and refactorings to these bugs.

3.1 Obtaining Bug Information
Depending on the project, information can be obtained

from the following sources:

Bug databases: The most obvious way to gather bug in-
formation is to directly access the bug database. Un-
fortunately, only project administrators have direct ac-
cess to the database, the average developer and other
people have to use a web interface to query and alter
the bug database. Querying the database for every
existing issue over the web interface can be tedious
if we want to retrieve all information available for all
bugs. However, getting an overview on the bugs is easy
using the web interface. This overview contains for ev-
ery bug at least its ID, and a hyperlink to additional
information about the bug, that can be downloaded
and parsed if needed. For SOURCEFORGE projects
the overview also includes the summary of each bug,
the date when the bug has been opened, the priority,
the status of the bug, the developer it is assigned to,
and the developer who has submitted it. In contrast,
the BUGZILLA overview does not contain the bug open
date and the submitter, but instead the severity of the
bug, the affected computer platforms, and for closed
bugs also the resolution (which may be “bugs is fixed”
or “bug report was invalid”).

Bug report mails: Bug report mails are emails that are
automatically generated and sent to the developer mail-
ing list by bug databases such as BUGZILLA or SOURCE-
FORGE when a new bug has been opened in the database
or the entry of an existing bug has been changed. A
bug report mail at least contains information about
the ID of the bug that has been altered, and a textual
description what exactly has been changed (e.g., the
bug has been resolved, or a comment has been added).

To get bug information using bug mails, one needs to
have access to the email archive of the project. For-
tunately, for most projects—especially those hosted at

114

SOURCEFORGE—these archives are freely accessible
over the web.

Recognizing the bug report mails in the mail archives
is quite simple: the sender of this mail is the bug
database and normally, the subject has a special for-
mat. For example, the SOURCEFORGE bug database
sends all its mails with the sender noreply@source-
forge.net and the subject “[project -Bugs-ID]bug
description ”.

Next, we parse the bug report mails using a regular-
expression based parser. In this work we are mainly
interested in when a bug has been opened. But other
information can also be recovered using appropriate
regular expressions.

3.2 Relating Changes and Bugs
Unfortunately, although bug information can be retrieved

from bug databases and bug report mails as described above,
there are only very few cases where the bug information
contains exact specifications about which source code change
is responsible for the respective bug. Thus, we have to use
heuristics here as well.

Our heuristics is to assume that a bug may be caused by
changes that have been done in a time window of n days
before the bug has been opened (reported).

Thus, for every day d in the lifetime of a project, we com-
pute the number of bugs #OBn

d that have been opened at
day d and the next n days.

Furthermore, we have to take into account that there are
days when there is more activity and when there is less.
As a measure for the activity we use the number of blocks
changed per day.

Thus, for every day d the number of changed blocks is
#CBd =

P
t∈Td

#CBt where Td is the set of transactions
on day d.

Instead of looking at the absolute numbers of refactorings
and bugs per day, we relate them to the number of changed
blocks. We also relate #OBn

d to the number of changed
blocks to be able to compare it with the refactoring ratio.

As the refactoring ratio is a percentage, its values are in
the range of [0, 1]. To be able to draw a single diagram
containing the refactoring ratio, as well as the number of
changed blocks and the number of bugs per block, we nor-
malize the latter two by dividing by the maximum value.

Thus, in our study we compared the following three met-
rics:

Normalized number of changed blocks:
%CBd = #CBd

#CBmax
where

#CBmax = max{#CBd|d day in the projects lifetime}.

Normalized number of bugs per changed block:

%BBn
d =

#OBn
d

#CBd#̇OBn
max

where

#OBn
max = max{#OBn

d |d day in the projects lifetime}.

Number of refactorings per changed block:
%RBd = #RCd

#CBd
where #RCd is the number of non-

overlapping, disambiguated refactoring candidates for
day d.

Project in CVS since #txns #versions #dev
ARGOUML 1998-01-26 16138 65593 42

JEDIT 2001-09-02 2141 10726 6
JUNIT 2000-12-03 832 1707 6

Figure 2: CVS data for the analyzed project
txns = transactions, dev = committers

4. CASE STUDY
4.1 The Analyzed Projects

In our case study we have applied the described techniques
to three different open source projects: JEDIT, JUNIT, and
ARGOUML. Although these projects may not be represen-
tative for all open-source projects, they are very different in
age, size, number of transactions, and number of involved
committers, as Figure 2 illustrates.

4.2 Study Settings
We applied our technique described in the previous sec-

tions to these three projects as follows: First, we computed
for each transaction the number of total changed code blocks
and the number of blocks affected by refactorings. To get
information on the level of days, we computed the sum of
the number of changed code blocks as well as of the number
of code blocks affected by refactoring for each transaction
that has been started at the same day.

Next, we collected data about how many bugs have been
opened per day for these projects. For ARGOUML a devel-
oper created bug statistics [7] and kindly provided the raw
data of these to us. For JEDIT we relied on the bug report
mails that are sent by the project’s bug database to the de-
veloper mailing list. As JUNIT does not use such bug report
mails we extracted the bug information for this project from
the SOURCEFORGE web interface.

As explained, we computed the value %BBn
d that relates

the changes of day d to bugs opened within the next n days.
Obviously, looking only at the same day would not be suf-
ficient. Thus, we decided to use a longer time window of
n = 5 which roughly corresponds to a working week.

4.3 ARGOUML
For ARGOUML Figure 3 shows for each day the normal-

ized number of changed blocks %CB, the percentage of
refactored blocks per day %RB, and the normalized number
of bugs per changed block %BB.

It can easily been seen that for most days the percentage
of refactorings with respect to all changed blocks is rather
small, interestingly there is no day where all changed blocks
are affected by refactorings. The days with the highest refac-
toring percentages are mainly between April 2005 and Oc-
tober 2005, thus we look at this period in more detail (see
Figure 5).

When we look at this figure it seems that for most days
with a high refactoring rate, the value of %BB does not
change tremendously. But, interestingly, for June 30, the
day with the overall highest refactoring rate (98.4%), it in-
creases noticeably. The log messages for the two transac-
tions performed on that day state that the undo functional-
ity is moved to a package on its own, but that a new word-
wrap feature is introduced additionally.

Another day with a noticeable refactoring rate and in-
creasing %BB is July 31. On the transactions at this day,

115

Nov 02 – May 03

0

0,2

0,4

0,6

0,8

1

1,2

1
.8

.2
0
0
2

1
.1

0
.2

0
0
2

1
.1

2
.2

0
0
2

1
.2

.2
0
0
3

1
.4

.2
0
0
3

1
.6

.2
0
0
3

1
.8

.2
0
0
3

1
.1

0
.2

0
0
3

1
.1

2
.2

0
0
3

1
.2

.2
0
0
4

1
.4

.2
0
0
4

1
.6

.2
0
0
4

1
.8

.2
0
0
4

1
.1

0
.2

0
0
4

1
.1

2
.2

0
0
4

1
.2

.2
0
0
5

1
.4

.2
0
0
5

1
.6

.2
0
0
5

1
.8

.2
0
0
5

1
.1

0
.2

0
0
5

%CB %RB %BB

Apr – Oct 05

3
0
.6

.2
0
0
5

Figure 3: Overview of values computed for AR-
GOUML

0

0,1

0,2

0,3

0,4

0,5

0,6

1.
11

.2
002

15
.1
1.2

00
2

29
.1
1.2

00
2

13
.1
2.2

00
2

27
.1
2.2

00
2

10
.1
.2

003

24
.1
.2

003

7.
2.

20
03

21
.2
.2

003

7.
3.

20
03

21
.3
.2

003

4.
4.

20
03

18
.4
.2

003

2.
5.

20
03

16
.5
.2

003

30
.5
.2

003

%CB %RB %BB

1
9
.3

.0
3

1
1
.5

.0
3

Figure 4: ARGOUML: November 2002 to May 2003

according to the log messages, the class PropPanelSignal
has been refactored, and furthermore among other things,
the developers have “implement(ed) signals and timexpres-
sions for events”. When looking at the bugs that have been
filed within the next five days we found a bug with the sum-
mary “Attributes disappear after typing an initial value”
in the component PropertyPanel, which also contains the
refactored class.

Another phase that contains many refactorings (although
the ratio is not very high for these days) is between Novem-
ber 2002 and May 2003—this phase is shown in Figure 4.
For most days with a high refactoring rate we cannot see
an effect on the normalized number of bugs per changed
block, with two exceptions: On March 19 and on May 11
we detected a high refactoring rate (39% resp. 26% of the
changed blocks affected by refactorings) but the value of
%BB increases as well. We looked in detail at these two
dates: the most noticeable specific characteristic of these
days is that they contain quite many transactions: On aver-
age between 5 and 6 transactions have been performed per
day, but on these days the transaction count has been 16
respectively 21.

0

0,2

0,4

0,6

0,8

1

1,2

1
.4

.2
0
0
5

1
5
.4

.2
0
0
5

2
9
.4

.2
0
0
5

1
3
.5

.2
0
0
5

2
7
.5

.2
0
0
5

1
0
.6

.2
0
0
5

2
4
.6

.2
0
0
5

8
.7

.2
0
0
5

2
2
.7

.2
0
0
5

5
.8

.2
0
0
5

1
9
.8

.2
0
0
5

2
.9

.2
0
0
5

1
6
.9

.2
0
0
5

3
0
.9

.2
0
0
5

1
4
.1

0
.2

0
0
5

2
8
.1

0
.2

0
0
5

%CB %RB %BB

3
0
.6

.0
5

3
1
.7

.0
5

Figure 5: ARGOUML: April to October 2003

4.4 JEDIT

0

0,2

0,4

0,6

0,8

1

1,2

0
3

.0
9

.2
0

0
1

0
3

.1
0

.2
0

0
1

0
3

.1
1

.2
0

0
1

0
3

.1
2

.2
0

0
1

0
3

.0
1

.2
0

0
2

0
3

.0
2

.2
0

0
2

0
3

.0
3

.2
0

0
2

0
3

.0
4

.2
0

0
2

0
3

.0
5

.2
0

0
2

0
3

.0
6

.2
0

0
2

0
3

.0
7

.2
0

0
2

0
3

.0
8

.2
0

0
2

0
3

.0
9

.2
0

0
2

0
3

.1
0

.2
0

0
2

0
3

.1
1

.2
0

0
2

0
3

.1
2

.2
0

0
2

0
3

.0
1

.2
0

0
3

0
3

.0
2

.2
0

0
3

0
3

.0
3

.2
0

0
3

0
3

.0
4

.2
0

0
3

0
3

.0
5

.2
0

0
3

0
3

.0
6

.2
0

0
3

0
3

.0
7

.2
0

0
3

0
3

.0
8

.2
0

0
3

0
3

.0
9

.2
0

0
3

0
3

.1
0

.2
0

0
3

0
3

.1
1

.2
0

0
3

0
3

.1
2

.2
0

0
3

0
3

.0
1

.2
0

0
4

0
3

.0
2

.2
0

0
4

0
3

.0
3

.2
0

0
4

0
3

.0
4

.2
0

0
4

0
3

.0
5

.2
0

0
4

0
3

.0
6

.2
0

0
4

0
3

.0
7

.2
0

0
4

0
3

.0
8

.2
0

0
4

0
3

.0
9

.2
0

0
4

0
3

.1
0

.2
0

0
4

%CB %RB %BB

2
0
.8

.0
2

May – Aug 02 March – June 03

Figure 6: Overview of values computed for JEDIT

Figure 6 illustrates our results for JEDIT. Again it catches
our eyes that there is no day that contains only refactorings
covered by the kinds we recognize. The highest refactoring
rate is even lower than 3

4 : it is 73.4% at August 20 2002.
We zoomed into two periods that seemed to be interesting

because there are many refactorings: Figure 7 gives a closer
look at the period between May and August 2002, while
Figure 8 shows the period between March and June 2003.
The following paragraphs describe these two phases in more
detail.

4.4.1 JEDIT refactoring phase in 2003
Let us first look at the refactoring phase in 2003 (Fig-

ure 8): It attracts attention that between April 19 and May
3 a lot of changes with a high percentage of refactorings
have been done, but no, respectively very few, new bugs
have been introduced in these days. This seems to sup-
port the thesis that refactorings are changes that are not
error-prone. We inspected the log messages given for the
concerned transactions and found out that the developers
documented mainly fixes and refactorings, but only few new
features in this phase.

There are also other days between March and June 2003
when changes with a high percentage of refactorings have
been done and no—or even a decreasing—effect on the value

116

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

01
.0
5.2

00
2

08
.0
5.2

00
2

15
.0
5.2

00
2

22
.0
5.2

00
2

29
.0
5.2

00
2

05
.0
6.2

00
2

12
.0
6.2

00
2

19
.0
6.2

00
2

26
.0
6.2

00
2

03
.0
7.2

00
2

10
.0
7.2

00
2

17
.0
7.2

00
2

24
.0
7.2

00
2

31
.0
7.2

00
2

07
.0
8.2

00
2

14
.0
8.2

00
2

21
.0
8.2

00
2

28
.0
8.2

00
2

%CB %RB %BB

1
9
.5

.0
2

2
1
.5

.0
2 2

6
.5

.0
2

3
0
.5

.0
2

4
.6

.0
2

6
.6

.0
2

1
3
.6

.0
2

2
0
.6

.0
2

2
.8

.0
3

1
3
.8

.0
3

2
0
.8

.0
3

Figure 7: JEDIT: May to August 2002

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

01
.0
3.2

00
3

08
.0
3.2

00
3

15
.0
3.2

00
3

22
.0
3.2

00
3

29
.0
3.2

00
3

05
.0
4.2

00
3

12
.0
4.2

00
3

19
.0
4.2

00
3

26
.0
4.2

00
3

03
.0
5.2

00
3

10
.0
5.2

00
3

17
.0
5.2

00
3

24
.0
5.2

00
3

31
.0
5.2

00
3

07
.0
6.2

00
3

14
.0
6.2

00
3

21
.0
6.2

00
3

28
.0
6.2

00
3

%CB %RB %BB

1
0
.3

.0
3

1
8
.3

.0
3

2
8
.3

.0
3

9
.5

.0
3 3
.6

.0
3

2
5
.6

.0
3

2
8
.6

.0
3

19.4 - 3.5.03

Figure 8: JEDIT: March to June 2003

of %BB can be observed: The respective days (March 3,
March 18, March 28) are annotated in Figure 8.

But we also found days where the refactoring percentage
%RB is rather high but the normalized number of bugs per
changed block increases nevertheless. This holds, for exam-
ple, for May 9, June 7 until June 9, and June 25 until June
28. We manually looked at the log messages of the trans-
actions performed on these days, as well as on the source
code changes. Although the refactoring percentage is high
for these days, functionality changes have been performed,
even within the blocks affected by refactorings.

4.4.2 JEDIT refactoring phase in 2002
Figure 7 shows the refactoring phase from May 2002 until

the end of August 2002. There are some days (May 21, May
26, May 30, June 13, Aug 8, Aug 13) with a high refactoring
ratio that, as expected, do not cause the normalized number
of bugs per changed block to increase noticeably.

But for four days (May 19, Apr 6, May 20, Aug 20) with
a refactoring percentage of greater than 10%, the value of
%BB increases. At the first of these dates, more than a
quarter of the changed blocks have been affected by refac-
torings. Two days later again 10% of the changed blocks
have been affected by refactorings. Nevertheless, the nor-
malized number of bugs per changed block has a peak at
these days. We looked in the log messages of the respective
transactions to find evidence for the author’s intention of
the changes and found that there has been a “display code
rewrite”, “syntax and text area reworking” and several “To-
kenMarker code refactorings” and “syntax refactoring” (all
transactions have been performed by the same developer).
Interestingly, one of the bugs that has been filed within 5

days has the summary “text area and syntax packages: Ma-
jor redraw issues”. However, the developer who commit-
ted the changes was expecting such problems: He has com-
mented the bug: ”The code in CVS is a work in progress.
It might not even compile [. . .] it might not even run. [. . .]
I’m [. . .] rewriting [. . .] the syntax highlighting code; so
problems [...] are to be expected.”

4.5 JUNIT

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0
7
.1

2
.2

0
0
0

0
7
.0

2
.2

0
0
1

0
7
.0

4
.2

0
0
1

0
7
.0

6
.2

0
0
1

0
7
.0

8
.2

0
0
1

0
7
.1

0
.2

0
0
1

0
7
.1

2
.2

0
0
1

0
7
.0

2
.2

0
0
2

0
7
.0

4
.2

0
0
2

0
7
.0

6
.2

0
0
2

0
7
.0

8
.2

0
0
2

0
7
.1

0
.2

0
0
2

0
7
.1

2
.2

0
0
2

0
7
.0

2
.2

0
0
3

0
7
.0

4
.2

0
0
3

0
7
.0

6
.2

0
0
3

0
7
.0

8
.2

0
0
3

0
7
.1

0
.2

0
0
3

0
7
.1

2
.2

0
0
3

0
7
.0

2
.2

0
0
4

0
7
.0

4
.2

0
0
4

0
7
.0

6
.2

0
0
4

0
7
.0

8
.2

0
0
4

0
7
.1

0
.2

0
0
4

0
7
.1

2
.2

0
0
4

0
7
.0

2
.2

0
0
5

0
7
.0

4
.2

0
0
5

0
7
.0

6
.2

0
0
5

0
7
.0

8
.2

0
0
5

0
7
.1

0
.2

0
0
5

%CB %RB %BB

Figure 9: Overview of values computed for JUNIT

We repeated our experiments for JUNIT, the complete re-
sults are illustrated in Figure 9. Like for the other projects,
there is no day with a refactoring percentage of 100%. The
top refactoring percentage for JUNIT is even smaller than for
the other two analyzed projects: on June 25 2002 exactly 2

3
of all changed blocks have been affected by refactorings.

Although we found only refactorings at a few days, there
seem to be two phases when refactorings have taken place:
The first one between March and September 2002, and the
second one between March and October 2005.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0
1
.0

3
.2

0
0
2

0
8
.0

3
.2

0
0
2

1
5
.0

3
.2

0
0
2

2
2
.0

3
.2

0
0
2

2
9
.0

3
.2

0
0
2

0
5
.0

4
.2

0
0
2

1
2
.0

4
.2

0
0
2

1
9
.0

4
.2

0
0
2

2
6
.0

4
.2

0
0
2

0
3
.0

5
.2

0
0
2

1
0
.0

5
.2

0
0
2

1
7
.0

5
.2

0
0
2

2
4
.0

5
.2

0
0
2

3
1
.0

5
.2

0
0
2

0
7
.0

6
.2

0
0
2

1
4
.0

6
.2

0
0
2

2
1
.0

6
.2

0
0
2

2
8
.0

6
.2

0
0
2

0
5
.0

7
.2

0
0
2

1
2
.0

7
.2

0
0
2

1
9
.0

7
.2

0
0
2

2
6
.0

7
.2

0
0
2

0
2
.0

8
.2

0
0
2

0
9
.0

8
.2

0
0
2

1
6
.0

8
.2

0
0
2

2
3
.0

8
.2

0
0
2

3
0
.0

8
.2

0
0
2

0
6
.0

9
.2

0
0
2

1
3
.0

9
.2

0
0
2

2
0
.0

9
.2

0
0
2

2
7
.0

9
.2

0
0
2

%CB %RB %BB

Figure 10: JUNIT: March to September 2002

Figures 10 and 11 show these two phases in more detail.
It seems that in 2002 days with a high refactoring rate are
likely to be followed by new bug reports, while in 2005 refac-
torings are rather done after bug reports have been filed.

5. RELATED WORK
Several techniques for detecting refactorings that occurred

between subsequent versions of a software system have been
developed [2, 4, 1, 5].

In a previous paper we showed that extracted refactoring
candidates can be checked for completeness, i.e., whether all

117

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0
1
.0

2
.2

0
0
1

0
8
.0

2
.2

0
0
1

1
5
.0

2
.2

0
0
1

2
2
.0

2
.2

0
0
1

0
1
.0

3
.2

0
0
1

0
8
.0

3
.2

0
0
1

1
5
.0

3
.2

0
0
1

2
2
.0

3
.2

0
0
1

2
9
.0

3
.2

0
0
1

0
5
.0

4
.2

0
0
1

1
2
.0

4
.2

0
0
1

1
9
.0

4
.2

0
0
1

2
6
.0

4
.2

0
0
1

0
3
.0

5
.2

0
0
1

1
0
.0

5
.2

0
0
1

1
7
.0

5
.2

0
0
1

2
4
.0

5
.2

0
0
1

3
1
.0

5
.2

0
0
1

0
7
.0

6
.2

0
0
1

1
4
.0

6
.2

0
0
1

2
1
.0

6
.2

0
0
1

2
8
.0

6
.2

0
0
1

%CB %RB %BB

Figure 11: JUNIT: March to October 2005

related locations have been changed [6].
In a recent case study Dig and Johnson found that 80%

of API changes, that lead to errors in the applications using
these APIs, are refactorings [3].

6. CONCLUSIONS
In this paper we have presented a technique to relate refac-

toring candidates that we extracted from CVS archives for
JAVA programs to bug data in order to find out if the ratio
of refactorings with respect to all changes has an impact on
the number of bugs that arise in the next days. Although
we found interesting correlations between refactorings and
bug reports, we are aware that these could be accidental or
caused by other factors like feature freezes that we did not
yet take into account.

In our case study we applied this technique to three open-
source projects. It turned out that in all three projects,
there are no days which only contain refactorings. This is
quite surprising, as we would expect that at least in small
projects like JUNIT there are phases in a project when only
refactorings have been done to enhance the program struc-
ture. But actually by far the highest refactoring ratio oc-
curred in ARGOUML which is by far the largest one of the
projects.

Finally, we found phases of the projects where a high ratio
of refactorings was followed by an increasing ratio of bugs,
as well as phases where there was no increase. While phases
of the second type prevail, phases of the first kind give inter-
esting insight when and why refactorings can cause errors.

7. ACKNOWLEDGMENTS
Michael Stockman kindly provided the bug data for ARGO-

UML.

8. REFERENCES
[1] G. Antoniol, M. D. Penta, and E. Merlo. An automatic

approach to identify class evolution discontinuities. In
Proceedings of 7th International Workshop on
Principles of Software Evolution (IWPSE 2004), 6-7
September, Kyoto, Japan, pages 31–40. IEEE
Computer Society, 2004.

[2] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding
refactorings via change metrics. In Proceedings of the
2000 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages & Applications
(OOPSLA 2000), pages 166–177, Minneapolis,
Minnesota, USA, 2000. ACM Press.

[3] D. Dig and R. Johnson. The role of refactorings in API
evolution. In Proceedings of the 21st IEEE
International Conference on Software Maintenance
(ICSM 2005), pages 389–398, Budapest, Hungary,
2005. IEEE Computer Society.

[4] M. W. Godfrey and L. Zou. Using origin analysis to
detect merging and splitting of source code entities.
IEEE Transactions on Software Engineering,
31(2):166–181, 2005.

[5] C. Görg and P. Weißgerber. Detecting and visualizing
refactorings from software archives. In Proceedings of
International Workshop on Program Comprehension
(IWPC05), St. Louis, Missouri, USA, May 2005.

[6] C. Görg and P. Weißgerber. Error Detection by
Refactoring Reconstruction. In Proceedings of
International Workshop on Mining Software
Repositories MSR 2005, St. Louis, Missouri, USA, May
2005.

[7] M. Stockman. ARGOUML statistics and diagrams
homepage.
http://user.tninet.se/~zaa397e/argouml/.

[8] The Eclipse Foundation. Eclipse Homepage.
http://www.eclipse.org.

[9] T. Zimmermann and P. Weißgerber. Preprocessing CVS
data for fine-grained analysis. In Proc. International
Workshop on Mining Software Repositories (MSR04),
Edinburgh, Scotland, UK, May 2004.

118

