
Accelerating Cross-Project Knowledge Collaboration
Using Collaborative Filtering and Social Networks

Masao Ohira Naoki Ohsugi Tetsuya Ohoka Ken–ichi Matsumoto
Graduate School of Information Science
Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara, JAPAN 630-0192
tel.+81(743)-72-5318 fax.+81(743)-72-5319

{masao, naoki-o, tetsuy-o, matumoto}@is.naist.jp

ABSTRACT
Vast numbers of free/open source software (F/OSS) develop-
ment projects use hosting sites such as Java.net and Source-
Forge.net. These sites provide each project with a variety
of software repositories (e.g. repositories for source code
sharing, bug tracking, discussions, etc.) as a media for com-
munication and collaboration. They tend to focus on sup-
porting rich collaboration among members in each project.
However, a majority of hosted projects are relatively small
projects consisting of few developers and often need more
resources for solving problems. In order to support cross-
project knowledge collaboration in F/OSS development, we
have been developing tools to collect data of projects and
developers at SourceForge, and to visualize the relationship
among them using the techniques of collaborative filtering
and social networks. The tools help a developer identify
“who should I ask?” and “what can I ask?” and so on. In
this paper, we report a case study of applying the tools to
F/OSS projects data collected from SourceForge and how ef-
fective the tools can be used for helping cross-project knowl-
edge collaboration.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Group
and Organization Interfaces—Collaborative computing,
Computer–supported cooperative work, Organization Design,
Web-based interaction

General Terms
Management, Measurement, Human Factors

Keywords
Knowledge Collaboration, Social Networks, Collaborative
Filtering, Visualization Tool

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. MSR’05, May 17, 2005, Saint Louis, Missouri,
USA
Copyright 2005 ACM 1-59593-123-6/05/0005...$5.00.

1. INTRODUCTION
Vast numbers of free/open source software (F/OSS) de-

velopment projects use hosting sites such as Java.net and
SourceForge.net. These sites provide each project with a
variety of software repositories (e.g. repositories for source
code sharing, bug tracking, discussions, etc.) which can be
seen as knowledge repositories for software development in
the aggregate. Many researchers focus on exploiting such
the repositories for supporting software development nowa-
days [4, 9].

While each project can accumulate its own knowledge
through software development into the repositories easily,
the “freely accessible” knowledge across projects is not sup-
ported sufficiently. In order to help cross-project knowledge
collaboration in F/OSS development, we have been develop-
ing tools to collect data of projects and developers at Source-
Forge, and to visualize the relationship among them using
the techniques of collaborative filtering and social networks.
The tools help a developer identify “who should I ask?” and
“what can I ask?” and so on.

In what follows, we first discuss the need for supporting
cross-projects knowledge collaboration based on our analysis
of SourceForge. Then we describe the procedure of mining
software repositories at SourceForge using our tools. In the
next section, we report a case study of applying Graphmania
to the F/OSS projects data collected from SourceForge and
illustrate how effective the tool can be used for helping cross-
project knowledge collaboration.

2. NEED FOR KNOWLEDGE COLLABO-
RATION ACROSS PROJECTS

Recent studies on F/OSS communities revealed that F/OSS
communities needed further developers and people’s contri-
bution to software development. For instance, [8] reported
only 4% of developers in the Apache community created
88% of new code and fixed 66% of defects. From a total of
196 developers in the Ximian project, 5 developers account
for 47% of the modification requests (MRs), while 20 ac-
count for 81% of the MRs, and 55 have done 95% of them
[3]. 4% of members account for 50 percent of answers on a
user-to-user help site [5].

Projects with a large proportion of non-contributors have
difficulty providing needed services such as bug fixes and
software enhancements to all members [1]. The existence of
highly motivated members would be the key success factor
of a F/OSS project[2]. As an approach to motivate members

111

Table 1: Number of Projects with n Developers
NUMBER OF NUMBER OF (%)
DEVELOPERS PROJECTS

0 278 0.3
1 60665 66.7
2 14151 15.6
3 5854 6.4
4 3222 3.5

Over 5 6732 7.4
TOTAL 90902 100

Table 2: Number of Developers on p Projects
NUMBER OF NUMBER

PARTICIPATING OF (%)
PROJECTS DEVELOPERS

1 100408 77.3
2 18753 14.4
3 5980 4.6
4 2350 1.8

Over 5 2406 1.8
TOTAL 129897 100

of online communities, some theories such as social capital
(e.g. ExpertsExchange1) and social networks [6, 12] have
attracted attention recently.

Relatively small projects registered at hosting sites are
confronted with more difficulties than such the large projects
mentioned above (e.g. the Apache project), because (1)
those projects consist of few developers and contributors
generally and (2) the hosting sites provide a variety of tools
for rich communication and collaboration among members
in each project but do not provide them with tools for ex-
changing or sharing problem-solving knowledge across projects
directly.

To confirm the issue related to (1), we collected and an-
alyzed the data of over 90,000 projects and about 130,000
developers2 at SourceForge in February 2005. Table 1 shows
the number of projects with n developers. 66.7% of overall
projects at SourceForge had only one developer. The maxi-
mum of number of developers in one project was 272. Table
2 shows the number of developers on p projects. 77.3% of
overall developers at SourceForge belonged to one project.
The maximum of number of projects a developer joined was
51.

These results are very similar to the results of the social
networks analysis in SourceForge in February 2002 [7]. As
Madey et al. mentioned in [7], these results indicate that a
small number of developers at SourceForge have rich links
to others (i.e. the “rich–get–richer” effect) but a major-
ity of developers does not have sufficient links to ask other
projects’ developers to help them solve problems which hap-
pened in their own projects. We believe that it is use-
ful to give developers in small projects means to access
other developers and projects that possess the information

1http://www.experts-exchange.com
2The total number of registered users at SourceForge.net are
over 1,000,000. We collected the data of members who are
participating in projects actually.

Table 3: Project Information (e.g. the phpMyAd-
min Project at SourceForge.net)

ATTRIBUTES EXAMPLE
project name phpMyAdmin
description phpMyAdmin is a tool written in

PHP intended to handle the ad-
ministration of MySQL ...

num. of developers 8
keywords php, databases, ...

program lang. PHP
operating system OS Independent

license GPL
status 5 – Production/Stable

registered 2001/3/18 02:07
intended audience Developers, End Users/Desktop,

System Administrators
user interface Web-based

topics Front-Ends, Dynamic Content,
Systems Administration

Table 4: Developer Information (e.g. One of authors
registered at SourceForge.jp)

ATTRIBUTES EXAMPLE
login name Ohsugi
public name Naoki Ohsugi
email address ohsugi at users.sourceforge.jp

site member since 2002/6/10 22:16
group member of NAIST Collaborative Filtering

Engines, Game-R, Bullflog
C/C++: Competent: 5 yr–10 yr

skill inventory Perl: Competent: 5 yr–10 yr
Java: Want to Learn: 2 yr–5 yr

or knowledge relevant to solving problems. The next sec-
tion describes the procedure of mining software repositories
at SourceForge using our tools and then illustrates how the
tools works.

3. GRAPHMANIA:ATOOLFORHELPING
KNOWLEDGE COLLABORATION

In order to support cross-project knowledge collaboration,
we have been developing Graphmania, a tool for visualiz-
ing the relationship among developers and projects using
the techniques of collaborative filtering and social networks.
The tool helps a developer identify “who should I ask?” and
“what can I ask?” and so on.

3.1 Data Collection
Using an autopilot tool for SourceForge.net3 written in

Ruby, we have collected two data sets; about 90,000 projects’
information (table 3) and 130,000 developers’ information
(table 4). In what follows, for simplicity, we suppose that
the data we use in this paper is project name and num.
of developers from the project info. , and login name and
group members of from the developer info. only (other
attributes will be used in the near future).

3available from the third author upon your requests

112

Figure 1: Developer-project networks (numbers in-between edges are the degree of similarity between nodes)

3.2 Social Network Analysis
In our approach, we can present three types of collabo-

rative social networks using above the data; developer net-
works, project networks, and developer-project networks. In
the developer networks, nodes correspond to developers. If
two developers have participated in a same project, the two
developers (nodes) are linked each other by an edge. In
a similar fashion, a project node in the project networks is
linked to another project node if a same developer has joined
the two projects. The developer-project networks is a rep-
resentation combined the two networks of developers and
projects (figure 1). All the three networks are represented
as undirected networks.

Most of studies on social network analysis often define de-
gree, weight and distance of nodes to characterize the topol-
ogy of networks [6, 7]. In our approach, however, the results
of the similarity calculations of Graphmania using collabo-
rative filtering are used to determine whether a node should
be linked to another node or not.

3.3 Collaborative Filtering
Graphmania is a tool for calculating similarities among

nodes and visualizing the results as social network graphs,
incorporating NAIST Collaborative Filtering Engines (NCFE)4

4Graphmania and NAIST Collaborative Filtering Engines

(see detailed algorithms in [10, 11]).
The similarities among developers are calculated using the

frequencies of participations in same projects. If developer i
and developer j join same projects many times, the similarity
among the two developers is rated highly. In the same way,
the similarities among projects are calculated using the fre-
quencies of co-existence of same developers in each project.
If there are many developers who are working together for
both project m and project n, the similarity among the two
projects is rated highly.

In general, recommender systems such as Amazon.com
use similarities for predicting and recommending customers’
preferred books as “Customers who bought this book also
bought...” Graphmania does not recommend anything cur-
rently but defines the relationship among developers and
projects using calculated similarities as threshold values.
Graphmania dose not visualize relations among developers
and projects with low similarities in order to avoid the com-
plexity of visualized results.

3.4 Visualizations
Graphmania shows an undirected network graph based

on the calculated similarities among F/OSS developers and
projects. For developer-project networks (figure 1), the graph

(NCFE) available from http://sourceforge.jp/projects/ncfe

113

Figure 2: Developer networks (The two developers
play a role of a linchpin between two social net-
works)

consists of two different types of nodes and three differ-
ent types of edges. A dotted edge connects two developers
who are working together for same projects. A dash-dotted
edge connects two projects that have same developers. Each
black line edge represents the relationship among projects
and developers (i.e. who is working for which projects and
which projects have whom).

Graphmania uses HyperGraph5 to provide users with hy-
perbolic views for visualizations and with interactivity to
visualized results. Hyperbolic visualizations help users un-
derstand information in detail while keeping an overview of
information (such the technique is called “focus + context”).
Since each node can have an URL to a website as a function
of HyperGraph, users are able to access to the site (devel-
opers’ information pages or projects’ HP) as soon as users
can find an interesting node.

4. A CASE STUDY
This section describes a case study of applying Graphma-

nia to F/OSS projects data collected from SourceForge and
how effective it can be used. As a condition of the similarity
calculation, we selected nodes with maximum 5 edges. This
means we used only a few percent of over 90,000 projects
data for reducing the amount of the similarity calculation.

Developer networks:
Figure 2 represents a part of developers networks snipped.
If you have maximum 5 edges, you can find the strength
of each edge comparing with similarities because it implies
shared history of participating in same projects. Even if

5http://hypergraph.sourceforge.net/

you have only a few edges, it would be also helpful to notice
important developers who play a role of a linchpin in the
cluster because you have possibilities to contact others via
the linchpin. For contacting others, just click the node you
are interested in and then you will be able to reach a devel-
opers’ information page. Developer networks are basically
same ones as social networks in common online communi-
ties.

Project networks:
Figure 3 represents a part of project networks snipped. You
can notice that similar name projects organize one cluster
because this indicates that projects that share specific pur-
poses or goals tend to have similar names (e.g. a project
related to TurboPower have “tp” at the head of a project
name). If you are a member of a project in such the cluster,
you might find interesting projects related to software you
create and might be able to obtain the useful information for
your software development from the members of the project.
Project networks are a good example of taking advantage of
collaborative filtering by a common practice in which similar
projects have similar project names.

Developer–project networks:
Using developer–project networks (figure 1), you can easily
notice your neighborhoods who are joining similar projects
with the red nodes and edges. You are easy to ask some-
thing to these neighborhoods because they are likely ac-
quaintances and seem to have similar interests of F/OSS
technologies. You can also recognize the projects’ neighbor-
hoods spend much effort from number of developers. These
projects might have ideas, technologies and solutions for
problems, which you need. Developer–project networks are
a bit complex but useful for finding developers and projects
related to your own.

5. CONCLUSION AND FUTUREWORK
In this paper, we described the issues on motivating F/OSS

(online) projects and needs for supporting knowledge col-
laboration across projects. We introduced Graphmania, a
tool for visualizing the relationship among developers and
projects using the techniques of collaborative filtering and
social networks.

In the near future, we have a plan to use other attributes
of the collected data listed in Table 3 and Table 4 for more
effective visualizations based on NCFE. We would also like
to extend the tool according to the Dynamic Collaboration
(DynC) framework [13] because the current tool cannot help
user control the amount of communication so that “rich”
developers or projects can prevent taking a lot of questions
and requests from “poor” developers or projects. Then we
would like to evaluate the tool through actual uses of F/OSS
developers.

6. ACKNOWLEDGMENTS
This work is supported by the EASE (Empirical Approach

to Software Engineering) project6 and supported by Grant
15103 of the Open Competition for the Development of In-
novative Technology program, the Comprehensive Develop-
ment of e-Society Foundation Software program of the Min-
istry of Education, Culture, Sports, Science and Technology
of Japan.

6http://www.empirical.jp/

114

Figure 3: Project networks (The large cluster in center consists of projects related to TurboPower. The
isolated small cluster on the upper left consists of projects related to Linux.)

7. REFERENCES
[1] G. Beenen, K. Ling, X. Wang, K. Chang,

D. Frankowski, P. Resnick, and R. E. Kraut. Using
social psychology to motivate contributions to online
communities. In Proc. of the 2004 ACM conf. on
Computer Supported Cooperative Work (CSCW’04),
pages 212–221, 2004.

[2] J. Feller and B. Fitzgerald. Understanding Open
Source Software Development. Addison-Wesley, 2002.

[3] D. German and A. Mockus. Automating the
measurement of open source projects. In Proc. of the
3rd Workshop on Open Source Software Engineering,
pages 63–67, 2003.

[4] A. E. Hassan, R. C. Holt, and A. Mockus, editors.
Proc. of 1st Intl. Workshop on Mining Software
Repositories (MSR2004), 2004.

[5] K. R. Lakhani and E. von Hippel. How open source
software works: “free” user-to-user assistance.
Research Policy, 32(6):923–943, 2003.

[6] L. Lopez-Fernande, G. Robles, and J. M.
Gonzalez-Barahona. Applying social network analysis
to the information in CVS repositories. In Proc. of 1st
Intl. Workshop on Mining Software Repositories
(MSR2004), pages 101–105, 2004.

[7] G. Madey, V. Freeh, and R. Tynan. The open source
software development phenomenon: An analysis based
on social network theory. In Americas conf. on
Information Systems (AMCIS2002), pages 1806–1813,
2002.

[8] A. Mockus, R. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache
and mozilla. ACM Transactions on Software
Engineering and Methodology (TOSEM),
11(3):309–346, 2002.

[9] M. Ohira, R. Yokomori, M. Sakai, K. Matsumoto,
K. Inoue, and K. Torii. Empirical project monitor: A
tool for mining multiple project data. In Proc. of 1st
Intl. Workshop on Mining Software Repositories
(MSR2004), pages 42–46, 2004.

[10] N. Ohsugi. A Framework for Software Function
Recommendation Based on Collaborative Filtering.
NAIST–IS–DT0361006, Graduate School of
Information Science, Nara Institute of Science and
Technology, 2004.

[11] N. Ohsugi, A. Monden, and K. Matsumoto. A
recommendation system for software function
discovery. In Proc. of 9th Asia-Pacific Software
Engineering conf. (APSEC’02), pages 248–257, 2002.

[12] Y. Ye and K. Kishida. Toward an understanding of
the motivation open source software developers. In
Proc. of the 25th Intl. conf. on Software Engineering
(ICSE’03), pages 419–429, 2003.

[13] Y. Ye, Y. Yamamoto, and K. Kishida. Dynamic
community: A new conceptual framework for
supporting knowledge collaboration in software
development. In Proc. of 11th Asia-Pacific Software
Engineering conf. (APSEC’04), pages 472–481, 2004.

115

