
Studying the evolution of libre software projects
using publicly available data

Gregorio Robles-Martínez, Jesús M. González-Barahona,
José Centeno-González, Vicente Matellán-Olivera, and Luis Rodero-Merino

GSyC, Universidad Rey Juan Carlos
{grex,jgb,jcenteno,vmo,lrodero}@gsyc.escet.urjc.es

Abstract

Libre software projects offer abundant information about
themselves in publicly available storages (source code
snapshots, CVS repositories, etc), which are a good source
of quantitative data about the project itself, and the software
it produces. The retrieval (and partially the analysis) of all
those data can be automated, following a simple method-
ology aimed at characterizing the evolution of the project.
Since the base information is public, and the tools used are
libre and readily available, other groups can easily repro-
duce and review the results. Since the characterization of-
fers some insight on the details of the project, it can be used
as the basis for qualitative analysis (including correlations
and comparative studies). In some cases, this methodology
could also be used for proprietary software (although usu-
ally losing the benefits of peer review). This approach is
shown, as an example, applied to MONO, a libre software
project implementing parts of the .NET framework.

1 Introduction

Since its birth, software engineering has been trying
to gain knowledge on the software development process
in order to quantify the timing, human costs and techni-
cal resources that lead to a successful software develop-
ment. Even so, in most cases experience has been acquired
by studying in detail a handful of software projects that
were accessible only to the researcher doing the study (due
to intellectual propriety constraints). Important facts, like
the detailed evolution of the source code or the developers
working in the project at any given time were not publicly
available for peer review. Quantitative characterization of
those projects were, usually, rather incomplete, making it
difficult to compare and correlate data.
However, since several years ago we have at our dis-

posal a good quantity of data about thousands of libre (free,

open source) software projects. Most of them provide the
researcher with very rich and complete information about
their state at any given time1. Being the number of projects
and data about them so huge, it seems important to use a
consistent and as much automated as possible methodology
to go from the data available to the characterization. This
should make the analysis of a large fraction of the available
information possible, and simplify comparative analysis.
On the other hand, focusing on libre software engineer-

ing, there is little work on the quantitative characterization
of libre software projects2. To be able of getting some con-
clusions about libre software development, a lot of work on
merely retrieving data about the projects has to be done.
Fortunately, it can be performed on an uniform and semi-
automated way.
From the different data available for libre software

projects, we propose a methodology based on the analysis
of the source code in CVS repositories, from three differ-
ent points of view: source code size, interaction with the
versioning system and authorship information. The combi-
nation of these approaches provide a detailed and complete
picture of the project and its historical evolution.

2 Tools and methodology

The proposed methodology is based on the use of CVS3.
Fortunately, there are a lot of projects in this situation: for

1In addition to the source code itself, several systems are used which
store historical and well structured information. The most relevant among
them is CVS (and its derivatives), but there are others: bug tracking sys-
tems, mailing lists, release snapshots, etc.

2There are several well known papers trying to cast libre software
projects from a more qualitative point of view (being [12] probably the
most popular), but they have to face a lot of criticism due to the lack of
quantitative data and methodology on which to base the analysis [1]

3Concurrent Version System, the versioning system most popular in the
libre software community. Many libre software projects use a repository
where all the source code and documentation are stored. Developers inter-
act with the central repository by checking out the latest version, modifying
it and committing back the changes. With every commit some information
is stored in the CVS log files: the committer, the date, the lines that have

instance, more than 10,000 projects hosted at SourceForge
use it [7], and the 11 largest projects in Debian 2.2 [5] use
versioning systems (all of them CVS except for Linux that
uses Bitkeeper, a proprietary solution). The core tools used
to study the data in the CVS repository are the following
ones4:

CODD [2] searches for authorship information in
source code, by tracking copyright notices and other
information in the headings of files. It then assigns the
length (in bytes) of each file to the corresponding au-
thors. CODD has been used in several studies since its
first release in 1999 (Orbiten Survey [3], source code
survey done for the FLOSS study [4], etc.)

SLOCCount [13] counts the number of physical
source lines of code (from now on, SLOC5) for a given
directory. It can recognize dozens of different lan-
guages, and tell apart files with source code from those
with documentation or other data. SLOC counts are
the input needed by the Basic COCOMO model (also
known as COCOMO I) to estimate minimum sched-
ules, efforts and costs. SLOCCount has been used to
study large collections of software, like GNU/Linux
distributions such as Debian [5] and RedHat [14].

CVSanalY allows the statistical analysis of CVS. It
gets the history of every file in the repository, and de-
termines who did what for each commit.

GlueTheos has been developed to coordinate the other
tools to implement the methodology. It extracts snap-
shots from the CVS repository at several points in the
past, and use the other tools to analyze them. It also
normalizes information in an XML format, suitable for
use as a detailed description of a project. From that
format, it can get statistical data, graphical informa-
tion and other formats (for instance, SQL tables) for
further analysis.

When studying a project, GlueTheos drives the other
tools to analyze it. It runs CVSanalY to get the historical
data directly from the CVS repository, looking for the inter-
actions of the developers with the repository. It also checks
out periodic snapshots of the source code, and runs on them
SLOCCount and CODD to get information on the authors

changed, etc. Each version of the committed file can be later retrieved. by
the studied project.

4All of them are available as libre software (except for those developed
by our group, which will be released shortly). This implies that other re-
search groups may easily verify our results as well as audit or enhance the
tools.

5A physical SLOC is defined as follows: “a physical source line of
code (SLOC) is a line ending in a newline or end-of-file marker, and which
contains at least one non-whitespace non-comment character”.

and sizes of the code. It later uses the combination of all
this information to generate different views of the project.
This combination is specially important. Much of the

data obtained by a tool is complementary to those got by
some other. All of them together add up important informa-
tion about the evolution and behavior of the project, which
an unique tool could not capture.

3 Case study: characterization of MONO

MONO [10] is a libre implementation of the .NET De-
veloper Framework [11], lead by a small Boston-based
company called Ximian which has about half a dozen full-
time or part-time employees assigned to the project. Com-
pared to other ‘classical’ libre software projects, MONO is
a young one, with less than two years of development. We
have chosen it to illustrate the results of the methodology
because it is a good example of a middle-to-big libre soft-
ware project, not too big so that it can easily researched
in time and scope, not too small so that it is not relevant6.
MONO is also interesting in itself because it merges some
‘classical’ software engineering techniques (object orienta-
tion, unit testing) with the expertise in libre software that the
developers at Ximian acquired during their participation in
the GNOME project7.
MONO’s CVS repository contains three development

modules: mcs, which contains the hierarchy of classes for
the C# language; mono, the C# compiler; and gtk-sharp, a
binding of the graphical toolkit Gtk to the C# language. In
the following subsections, the results of the methodology
on those three modules are presented.

3.1 Commits

Figure 1 shows the evolution of the commits versus time.
It shows clearly how the mcs module is currently the most
active, doubling the activity of the other two, but also that
in the early stages, mono was developed roughly in parallel
with mcs.
To interpret this behavior, one could imagine that at the

beginning of the project a lot of effort had to be devoted to
create the compiler, certainly the core of the project. Once it
had reached a certain maturity, the primary interest shifted
towards mcs, which gives value-added functionality to the
whole framework. That could also explain why gtk-sharp is
younger: essential components have to be developed first,
while other modules can be constructed upon them later.

6With over 32,000 commits, it would have been the fourth most active
project if hosted at SourceForge [7], by number of commits.

7One of the founders of Ximian was Miguel de Icaza, one of the
GNOME leaders, and many of its developers are well-known and recog-
nized GNOME hackers

112

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700

Co
m

m
its

Time (in days)

Commits by module

mcs
mono

gtk-sharp

Figure 1. Commits vs. time

module Number of Committers
mcs 92
mono 65
gtk-sharp 22

Table 1. Committers per module

The commits per day graph (not shown for lack of space)
displays an interesting behavior. The peaks of activity for
the mcs module usually happen in days close to releases,
in particular some days before and after the formal release.
The former are probably because authors want to ship some
code with the imminent release, while the latter are proba-
bly due to fixes originated by bug and error reports.

3.2 Committers

The figures in table 3.2 provide some information about
the manpower devoted to the project. In it, a committer
is a developers who has done at least one commit for the
module.
In figure 2 months have been divided in three thirds of

ten days each, and for each third the number of different
active committers8 has been counted. All the lines have a
tendency to grow, but that growth is not monotonic. For in-
stance, the decrease in the 60th third (December 21st to De-
cember 31st, 2002) matches Christmas celebration. MONO
is a project leaded by a company, but with many volunteer
developers. It would be interesting to know whether this
kind of behavior is more or less acute when developers are
mainly volunteers or when they are mainly employees to

8Active committers are those who have done at least one commit during
a give period

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70

Co
m

m
ite

rs

Time (in monthly thirds)

Developer participation (CVSanal)

mcs
mono

gtk-sharp

Figure 2. Committers vs. time

work in the project. On the other hand, it is worthwhile
to note that the MONO project has a small number of de-
veloper withdrawal: in the latest periods over 85% of the
committers have contributed with at least one commit.

3.3 Authorship attribution from source code

Figure 3 keeps analyzing developer information, from
a different point of view. The information analyzed now
is obtained directly from the source code annotations, not
from the CVS logs, which permits the identification of de-
velopers without CVS write permission. The first evidence
is that the number of committers and authors appears to be
similar only for the gtk-sharp module. The number of au-
thors for the mcs module is 75% larger than the number of
committers, but it is 50% smaller for mono. The reason for
this is unclear, but some comments can be made. The mcs
module contains some external code that has been imported
into it. Its authors appear only in the headings of the files,
but have not committed the code into CVS themselves. In
the case of mono, the difference could be attributed to the
fact that ‘missing’ authors sum up altogether less than 100
commits (over a total of over 9000 commits for the whole
mono module): their contribution could be too small to get
any credits in the source code.
Figures 4 and 5 show the total number of authors found

in the mcs and mono modules as well as the number of
authors whose contribution is superior to three given per-
centages. It can be observed how although the number of
authors increases over time, the number of developers who
have contributed with more than 10%, 5% and 3% of the
total code tends to a constant value. It is also shown how
while for mcs there are three clear different values for each
percentage, in the case of the mono module they all tend to

113

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90

De
ve

lo
pe

rs

Time (in weeks)

Authors in source code (extracted with CODD)

mcs
mono

gtk-sharp

Figure 3. Authors vs. time

the same value. This means that contributions to mcs are
more ‘staggered’ than in the case of mono. This could be a
consequence of mono being a project developed primarily
by a few ‘main’ developers. The other contributions done
by others are comparatively small.
Figures 4 and 5 show several anomalies. For instance,

there is noticeable decrease in mono between the 12th and
13th week. It can be explained by some code been re-
moved from the repository: the libffi library9, which caused
some problems when installing with Cygwin and that was
removed once it was not needed anymore (as documented
in the mono-list mailing list). Running CODD on the libffi
directory the week before the removal shows how this li-
brary has been developed primarily by employees of Red
Hat, Software AG and HP. Once removed these entries do
not appear anymore, causing a decrease in the number of
authors found.

3.4 Lines of code

In figure 6 the evolution of the code (in physical lines of
code versus time) is shown. The evolution of the several
modules studied can be appreciated (with rather different
growth rates). Some periods with large restructurations re-
sulting in the dropage of several thousands lines of code are
clearly visible (see the line for mcs). The relevance of each
module in different stages of the project is also clearly visi-
ble.
As a side note, although it was shown how the decrease

in authors in mono between the 12th and 13th week is clear,
it is hardly noticeable in the SLOC evolution.

9The libffi library provides a portable, high level programming inter-
face to various calling conventions.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90

De
ve

lo
pe

rs

Time (in weeks)

Developer contribution by percentage

all mcs module developers
mcs developers with > 10% contribution
mcs developers with > 5% contribution
mcs develoeprs with > 3% contribution

Figure 4. Developers contributing (in mcs) vs.
time

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90

De
ve

lo
pe

rs

Time (in weeks)

Developer contribution by percentage

all mono module developers
mono developers with > 10% contribution
mono developers with > 5% contribution
mono develoeprs with > 3% contribution

Figure 5. Developers contributing (to mono)
vs. time

114

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 10 20 30 40 50 60 70 80 90

(p
hy

sic
al

) S
LO

Cs

Time (in weeks)

SLOCs (obtained with SLOCCount)

mcs
mono

gtk-sharp

Figure 6. Source lines of code vs. time

4 Conclusions and further work

Libre software development permit analysis of unprece-
dent depth and detail for a fully reviewable and repeatable
software engineering study [8]. The huge amount of infor-
mation available for lots of libre software projects, with a
great variety in size, programming language, programming
tools, programming methods, etc. offers the possibility of
creating a comparison framework from which knowledge
and experience can be gained. The qualitative comparisons
that are nowadays usually made could be completed with
quantitative data taken at any given point of the life of a
project. This allows for the having realistic pictures of the
status of a project and its evolution, which should be very
valuable to the managers and developers of the project. In
addition, data crossing and comparisons between the differ-
ent sources used in the described methodology gives soft-
ware engineers a wider perspective of the studied projects.

Many work has still to be done to enhance the tools used
to implement the methodology, and the methodology itself,
in order to obtain more insight on the process of creating
libre software. In this respect, although this paper gives an
idea of a methodological approach, it is in fact very limited.
Future research should include many other parameters that
have not been taken into account yet. For instance, the use
of complexitymeasures (McCabe [9] or Halstead [6]) is one
of the considerations that are missing and should be intro-
duced. From other point of view, more specific correlations
should be studied so that characterization of a project from
some points of view would permit the inference of other
information more difficult to obtain.

References

[1] N. Bezroukov. A second look at the cathedral and the bazar.
First Monday, 1997.
http://www.firstmonday.dk/issues/issue4_12/
bezroukov/.

[2] Codd.
http://codd.berlios.de/.

[3] R. A. Ghosh and V. V. Prakash. The orbiten free software
survey, May 2000.
http://www.firstmonday.dk/issues/issue5_7/
ghosh/.

[4] R. A. Ghosh, G. Robles, and R. Glott. Software source
code survey (free/libre and open source software: Survey
and study). Technical report, International Institute of In-
fonomics. University of Maastricht, The Netherlands, June
2002.
http://www.infonomics.nl/FLOSS/report.

[5] J. M. González-Barahona, M. A. Ortuño Pérez, P. de las
Heras Quirós, J. Centeno González, and V. Matellán Oliv-
era. Counting potatoes: The size of Debian 2.2. Upgrade
Magazine, II(6):60–66, Dec. 2001.
http://people.debian.org/~jgb/debian-counting/
counting-potatoes/.

[6] M. H. Halstead. Elements of Software Science. Elsevier,
New York, USA, 1977.

[7] K. Healy and A. Schussman. The ecology of open-source
software development. Technical report, University of
Arizona, USA, Jan. 2003.
http://opensource.mit.edu/papers/
healyschussman.pdf.

[8] S. Koch and G. Schneider. Results from software engi-
neering research into open source development projects
using public data. Diskussionspapiere zum Tätigkeitsfeld
Informationsverarbeitung und Informationswirtschaft, (22),
2000.
http://wwwai.wu-wien.ac.at/~koch/forschung/
sw-eng/wp22.pdf.

[9] T. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, 1976.

[10] Mono.
http://www.go-mono.com/.

[11] .NET developer framework.
http://msdn.microsoft.com/library/default.asp?
url=/nhp/default.asp?cont%entid=28000519.

[12] E. S. Raymond. The cathedral and the bazar. First Monday,
1997.
http://www.firstmonday.dk/issues/issue3_3/
raymond/.

[13] Sloccount.
http://www.dwheeler.com/sloccount/.

[14] D. A. Wheeler. More than a gigabuck: Estimating
gnu/linux’s size, June 2001.
http://www.dwheeler.com/sloc/redhat71-v1/
redhat71sloc.html.

115

