Developer identification methods for integrated data from
various sources

Gregorio Robles, Jesus M. Gonzalez-Barahona

{grex, jgby@gsyc.escet.urjc.es
Grupo de Sistemas y Comunicaciones
Universidad Rey Juan Carlos
Madrid, Spain

ABSTRACT

Studying a software project by mining data from a sin-
gle repository has been a very active research field in soft-
ware engineering during the last years. However, few efforts
have been devoted to perform studies by integrating data
from various repositories, with different kinds of informa-
tion, which would, for instance, track the different activities
of developers. One of the main problems of these multi-
repository studies is the different identities that developers
use when they interact with different tools in different con-
texts. This makes them appear as different entities when
data is mined from different repositories (and in some cases,
even from a single one). In this paper we propose an ap-
proach, based on the application of heuristics, to identify
the many identities of developers in such cases, and a data
structure for allowing both the anonymized distribution of
information, and the tracking of identities for verification
purposes. The methodology will be presented in general,
and applied to the GNOME project as a case example. Pri-
vacy issues and partial merging with new data sources will
also be considered and discussed.

1. INTRODUCTION

Most research in the area of mining software repositories
has been performed on a single source of data. The reason
for this is that tools are usually targeted towards accessing
a specific kind of data, which can be retrieved and analyzed
uniformly. Data mining for control versioning systems [11],
bug-tracking systems, mailing lists and other sources is cur-
rently state of the art. The focus of these studies is more on
the analysis than in the data extraction process, which can
be automated, as has already been discussed [2, 9].

However, there is a wide interest in considering data from
several sources and integrating them into a single database,
getting richer evidence from the observed matter [5]. The
data gathered following this approach can be used for study-
ing several kinds of artifacts relevant to the software develop-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MSR’05, May 17, 2005, St. Louis, Missouri, USA.

Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

106

ment process, such as source code files or, as we will discuss
in this paper, developers.

As an example of the usefulness of this approximation,
let’s consider collaboration in libre software® projects, which
is an active research field. Libre software is produced in part
(in many cases a large part) by volunteers, which makes it
difficult to predict the future evolution. However, it has
at least in some cases produced high-quality software, used
by millions of persons around the world. It has been shown
that this collaboration follows a Pareto law for commits [11],
source code contributions [4], bug reports [8] or mailing
list posts [6]; i.e. a small amount of developers of around
20% is responsible for a huge amount of the produced ar-
tifacts (around 80%). But although this research on dif-
ferent sources coincide in results, there is still no evidence
of coherence. In other words, although it is known that
the Pareto distribution appears in several data sources for
a given project, are the most active actors for each of those
sources (mailing lists, code repositories, bug report systems,
etc.) the same ones?

In the specific case of merging information about develop-
ers from different repositories, the main difficulty is caused
by the many identities that they use from repository to
repository, and even for the same one, making tracking diffi-
cult. That is the reason why we need methods and tools that
can find the different identities of a given developer. These
methods, and the data they produce, should be designed to
be sharable among research groups, not only for validation
purposes but also for enabling the merging of partial data
obtained by different teams from different sources.

In general, any study considering individuals in libre soft-
ware projects, even when using a single data source, is sen-
sible to identity variety. Before performing any analysis on
the data set, it is necessary to merge the identities corre-
sponding to the same person. This is for instance the case
in the promising case of clustering [3] and social network
analysis [7], which are trying to get insight in the structure
of libre software projects.

The structure of this paper is as follows. The next section
deals with the kinds of identities which are usually found in
software-related repositories. The third section is devoted to
the extraction of data, its structure and verification. Section

!Through this paper we will use the term “libre software”
to refer to any code that conforms either to the definition of
“free software” (according to the Free Software Foundation)
or “open source software” (according to the Open Source
Initiative).

four deals with heuristics for matching identities. Handling
data about developers raises some privacy concerns, which
are discussed in the fifth section, including some suggestions
and solutions for sharing data without violating anonymity.
We finish the paper with a section on conclusions and further
work. We also include two appendixes, one with some results
of applying the methodology to some GNOME repositories,
and the other to post-matches analysis.

2. IDENTITIES IN SOFTWARE REPOSITO-
RIES

Libre software developers, or more broadly, participants
in the creation of libre software (from now on actors) usually
interact with one or more Internet-based systems related to
the software production and maintenance, some of which
are depicted in Figure 1. These systems usually require
every actor to adopt an identity to interact with them. This
identity is usually different for every system, and in some
cases a given author can have more than one identity for
the same system, sometimes successive in time, sometimes
even contemporary.

Mailing Lists @

Source Code

Actor Versioning Repository
@ Bug Tracking
Other

Figure 1: Different systems with which an actor may
interact.

Some kinds of identities are the following (summarized in
Table 1):

e An actor may post on mailing lists with one or more e-
mail addresses (some times linked to a real life name).

In a source file, an actor can appear with many iden-
tities: real life names (such as in copyright notices),
e-mail addresses, RCS-type identifiers (such as those
automatically maintained by CVS), etc.

The interaction with the versioning repository occurs
through an account in the server machine, which ap-
pears in the logs of the system.

e Bug tracking systems require usually to have an ac-
count with an associated e-mail address.

107

Other sources may include entries in weblogs, forums,
blogs, etc. Although they are not considered in this study,
the approach proposed could easily include them.

Type Data Source Primary Identities
(1) Mailing lists username@example.com
(1) Mailing lists Name Surname
(2) Source Code (c) Name Surname
(2) Source Code (c) username@example.com
(2) Source Code $id: username$
(3) Versioning System username
(4) Bug Tracking username@example.com

Table 1: Identities that can be found for each data
source.

Given the various identities linking an actor to his actions
on a repository, our goal is to determine all which correspond
to the same real person. Basically we can classify these
identities in two types: primary and secondary.

e Primary are mandatory. For instance, actors need an
e-mail address to post a message to a mailing list.
Mailing lists, versioning system and bug tracking sys-
tem require to have at least a mandatory identity in or-
der to participate (although in some exceptional cases
this can be done anonymously). Source code does not
have primary identities, except in some special projects
where the copyright notice or some other authorship
information is mandatory.

Secondary are redundant. For instance, actors may
provide their real-life name in the e-mails they send,
but this is not required. Secondary identities usually
appear together with primary identities, and may help
in the identification process of actors.

Note that the relationships between actors and reposito-
ries have not to be unique: an actor could have one or more
different identities in any repository. Even in cases such as
CVS repositories, a given actor may change the username of
his account, and of course the same actor could have differ-
ent usernames in different CVS repositories.

3. DATA FETCHING, STRUCTURE AND VER-

IFICATION

Figure 2 shows a glimpse of the data structures used to
learn the identities that correspond to the same person in
several data sources.

All the identities are introduced into the database in the
Identities table. This table is filled by directly extracting
identities (using heuristics to locate them) from software-
related repositories. Besides the identity itself, this table
stores identifiers for the repository (data source) where it
was found, which could be of value not only in the lat-
ter matching process, but also for validation and track-back
purposes. The kind of identity (login, email address, “real
name”) is also stored, to ease the automatic processing.
Hashes of identities are added to provide a mechanism which
can be used to deal with privacy issues, as will be described
in a later subsection.

When extracting identities, sometimes relationships among
them can be inferred. For instance, a real name can be next

to an e-mail address in a From field in a message. Those
relationships are captured as entries in the Matches table,
which will be the center of the matching (identification of
identities of the same person) process. The ‘evidence’ field
in this table provides insight about every identified match.
As the process we are performing is mostly automatic, the
value of ‘evidence’ will contain the name of the heuristic
that has been used. This will include automatic heuristics,
but also human inspection and verification. Sometimes, the
information is not enough to ensure that the match is true
for sure, and that is the reason why a field showing the es-
timated probability has been added. Fields that have been
verified by humans with absolute certainty will be assigned
a probability of 1.

With the information stored in Identities and Matches,
the identification process may begin. Unique actors are iden-
tified with information in Matches, filling the Identifications
table, and choosing unique person identifiers. Other infor-
mation in the Persons table can be filled directly with data
from the repositories or from other sources.

4. MATCHING IDENTITIES IN MORE DE-
TAIL

We will usually have many identities for every actor. For
instance, we can have name(s), username(s) and e-mail ad-
dress(es). Every actor considered will have at least one of
them, although possibly he may be identified with several,
as is shown in Figure 3.

Real-life Name

+Mame Surname

+MName M. Surname

+Mame Middlename Surname
+Nickname Surname

L —
Username
+user
€——{+username
+nickname
-
Actor

Email Address

+user@example.cor
+user@example.org
+name.surname@example.com
+nickname@example.com
o

Figure 3: An actor with three different kinds of iden-
tities

Our problem is how to match all the identities that corre-
spond to the same actor. In other words, we want to fill the
Matches table with as much information as possible (and as
accurate as possible). As already mentioned this is done us-
ing heuristics. Let’s expose some of them with some detail:

e In many cases it is common to find a secondary iden-
tity associated to a primary one. This happens often in

108

mailing lists, source code authorship assignments and
bug tracking system. In all these cases, the primary
identity (usually an e-mail address) may have a ‘real
life’ name associated to it. Consider, for instance, Ez-
ample User <username@ezxample.com>, which implies
that Example User and <username@ezample.com> cor-
respond to the same actor. GPG key rings can also be
a useful source of matches. A GPG key contain a list
of e-mail addresses that a given person may use for
encryption and authentication purposes. GPG is very
popular in the libre software community and there ex-
ist GPG servers that store GPG keys with all these
information.

e Sometimes an identity can be built from another one.
For instance, the ‘real life’ name can be extracted
in some cases from the e-mail username. Many e-
mail addresses follow a given structure, such as nsur-
name@ezxample.com, name.surname@example.com or
name_surname@example.com. We can easily infer in
those cases the ‘real life’ name of the actor.

e In many cases one identity is a part of some other.
For instance, it is common that the username obtained
from CVS is the same as the username part of the e-
mail address. This can be matched automatically, and
later verified by other means. This is one of the more
error-prone heuristics, and is of course not useful for
very popular usernames like ‘joe’. But despite these
facts, it has proven to be very useful.

e Some projects or repositories maintain specific infor-
mation that can be used for matching (for instance,
because a list of contributors is maintained). As an
example, the KDE project maintains a file which lists,
for every person with write access to the CVS, his
‘real life’ name, his username for CVS and an e-mail
address. Other similar case are developers registered
in the SourceForge.net platform, who have a personal
page where they may include their ‘real life’ name.

Of course this is not an exhaustive list, and combinations
of the described heuristics can be used. For instance, a
mixed approach could benefit from the data in Changelog
files [1] for finding identity matches.

Usually, the fraction of false positives for matches can be
minimized by taking into account the project from which
the data was obtained. If we have a ‘joe’ entry as user-
name for the CVS repository in an specific project, and in
that same project we find somebody whose e-mail address is
joe@example.com (and no other e-mail address that could
be suspicious of being from a ‘joe’) then there is a high
probability that both are identities of the same actor.

In any case, the fraction of false positives will never be zero
for large quantities of identities. Therefore, some heuris-
tics are specifically designed for cleaning the Matches ta-
ble (eliminating those entries which are not correct, despite
being found by an heuristic) and verification, including hu-
man verification. In some cases, the help from an expert
that knows about the membership of a project, for instance,
should be of great help.

But even after cleaning and verification, some matches
will be false, and some will be missing, which can cause
problems. However, since we are interested in using the

+identity_idl
+1identity_1d2

Persons
Sources Identities +person_id
+source_id +identity_id (hash) | § iFi i Identifications | [+ (hash)
+source_type | [+identity Identltlcatlon P{+match_1d +nat}unahty
+source_URL +source_id +person_id +nationality_w
+tproject +identity_type +gender
+gender_w
Matches
+match_id

+evidence
+probability
data T
sources history

Figure 2: Main tables involved in the matching process and identification of unique actors

collected data for statistical purposes, this is not a big issue
provided the error rate is small enough.

5. PRIVACY ISSUES

Privacy is of course an important concern when dealing
with sensible data like this. Although all the information
used is public, and it hardly contains any private data, the
quantity and detail of the information available for any sin-
gle developer after processing may cause privacy problems.
Therefore, we have devised a data schema which allows both
for the careful control of who has access to linking data to
identified real persons, and for the distribution of informa-
tion preserving anonymity. In the latter case, the informa-
tion can be distributed in such a way that real persons are
not directly identifiable, but new data sets can be, however,
combined with the distributed one. This will for sure allow
for a safe exchange of information between research groups.

For this purpose, the hashes of identities serve as a fire-
wall. They are easy to compute from real identities, but
are not useful for recovering them when only the hashes are
available. Therefore, the Matches, Identifications and Per-
sons tables can be distributed without compromising the
real identities of developers as a whole. However, new data
sets can be combined. Assuming a research group has a sim-
ilar schema, with some identities found, the corresponding
hash can be calculated for any of them and it may be looked
up in the Matches table. Of course this will not be useful
in many cases for finding new matches, but it would always
allow to link an identity (and the data associated with it) to
an actor in the Persons table. Therefore, any development
data distributed using hash identities instead of developer
names can be safely shared (but see below).

Although hashes will make it impossible to track real per-
sons from the distributed data, it is still possible to look for
certain persons in the data set. By hashing the usual iden-
tifiers of those persons, they can be found in the Matches
table, and their identity is thus discovered. That is the
reason why although distributing hashes to other research
groups under reasonable ethical agreements is acceptable,
probably it is not to do the same for anyone.

To avoid this problem, our schema has still a second level
of privacy firewall: the person identifier in the Persons table.
This identifier is given in such a way that it cannot be used

109

in any way to infer the identities of an actor without having
access to the Identifications table. Therefore it is enough to
key all development data with this person identifiers, and
distributing only the Persons table in addition to that data
to ensure the full privacy of the involved developers.

Of course, even in this latter case somebody could go to
the software repositories used to obtain the data, and try to
match the results with the distributed information. But this
is an unavoidable problem: a third party can always milk
the same repositories, and obtain exactly the same data,
including real identities. In fact, this is the basis of the
reproducibility of the studies.

6. CONCLUSIONS AND FURTHER WORK

Actors in libre software projects may use many different
identities when interacting with different systems related to
the development (and even with just a single one). When
studying repositories related to libre software development
it is very important to find those corresponding to the same
person, so that actions can be assigned to the corresponding
actor.

In this paper we have presented a design for dealing with
this problem, and a methodology, based on heuristics, to
identify as accurately as possible the different identities of
the involved actors. For that, we use information stored in
the repositories, and rely on some properties of the identi-
fiers. This information can also be used to infer some per-
sonal information, such as the gender or the nationality (as
is shown in appendix).

We have also discussed how privacy issues can be dealt
with in our schema, including the distribution of anonymized
information about the development, and have presented some
results of performing the described study on some reposito-
ries of the GNOME project (in appendix).

We are currently testing our approach with larger data
sets from several projects at once, and also starting to use
it for sharing development data with other research groups.
In the future, we are planning to include the functionality
described in our GlueTheos tool [10], and to use it widely to
obtain estimations of the number of people involved in libre
software development, and their activities. We expect to use
this data in combination with data from surveys and other
sources to get a more complete view of the libre software

development landscape.

7. ACKNOWLEDGEMENTS

This work has been funded in part by the European Com-
mission, under the CALIBRE CA, IST program, contract
number 004337, by the Universidad Rey Juan Carlos un-
der project PPR-2004-42 and by the Spanish CICyT under
project TIN2004-07296.

8. REFERENCES

(1] A. Capiluppi, P. Lago, and M. Morisio. Evidences in
the evolution of os projects through changelog
analyses. In Proceedings of the 3rd Workshop on Open
Source Software Engineering, 2003.

[2] D. German and A. Mockus. Automating the
measurement of open source projects. In Proceedings
of the 3rd Workshop on Open Source Software
Engineering, Portland, USA, 2003.

[3] R. A. Ghosh. Clustering and dependencies in
free/open source software development: Methodology
and tools. First Monday, 8(4), Apr. 2003.

[4] R. A. Ghosh and V. V. Prakash. The orbiten free
software survey. First Monday, 7(5), May 2002.

[5] J. M. Gonzalez-Barahona and G. Robles. Getting the
global picture. In Proceedings of the Ozford Workshop
on Libre Software 2004, Oxford, UK, June 2004.

[6] S. Koch and G. Schneider. Effort, cooperation and
coordination in an open source software project:
Gnome. Information Systems Journal, 12(1):27-42,
2002.

[7] L. Lopez, J. M. Gonzalez-Barahona, and G. Robles.
Applying social network analysis to the information in
cvs repositories. In Proceedings of the International
Workshop on Mining Software Repositories, Edinburg,
UK, 2004.

[8] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of Open Source software development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309-346, 2002.

[9] G. Robles, J. M. Gonzalez-Barahona, J. Centeno,

V. Matellan, and L. Rodero. Studying the evolution of
libre software projects using publicly available data. In
Proceedings of the 8rd Workshop on Open Source
Software Engineering, pages 111-115, Portland, USA,
2003.

[10] G. Robles, J. M. Gonzalez-Barahona, and R. A.
Ghosh. Gluetheos: Automating the retrieval and
analysis of data from publicly available software
repositories. In Proceedings of the International
Workshop on Mining Software Repositories, Edinburg,
Scotland, UK, 2004.

[11] G. Robles, S. Koch, and J. M. Gonzalez-Barahona.
Remote analysis and measurement of libre software
systems by means of the cvsanaly tool. In Proceedings
of the 2nd ICSE Workshop on Remote Analysis and
Measurement of Software Systems (RAMSS),
Edinburg, Scotland, UK, 2004.

APPENDIX
A. A CASE STUDY: GNOME

110

To debug and complete our methodology, we have applied
it to the data from several real libre software repositories.
One of the most complete studies we have performed to
date has been on the GNOME project, retrieving data from
mailing lists, bug tracking system (including bug reports
and comments) and from the CVS repository. Next, we
offer some results from this study:

e 464,953 messages from 36,399 distinct e-mail addresses
have been fetched and analyzed.

e 123,739 bug reports, from 41,835 reporters, and 382,271
comments from 10,257 posters have been retrieved from
the bug tracking system.

e Around 2,000,000 commits, made by 1,067 different
commiters have been found in the CVS repository.

e From these data, 108,170 distinct identities have been
identified.

e For those distinct identities, 47,262 matches have been
found, of which 40,003 were distinct (therefore, our
Matches table contains that number of entries).

e Using the information in the Matches table, we have
been able of finding 34,648 unique persons.

This process has been statistically verified by selecting
a sample of identities, looking by hand for matches and
comparing the results to the corresponding entries in the
Matches table. Currently we are completing the Persons
table, and performing gender and nationality analysis.

B. AUTOMATIC (POST-IDENTIFICATION)
ANALYSIS

The reader has probably noted that the Persons table in
Figure 2 includes some fields with personal information. We
have devised some heuristics to infer some of them from data
in the repositories, usually from the structure of identities.
For instance, nationality can be guessed by several means:

e Analyzing the top level domain (TLD) of the various
e-mail addresses found in the identities could be a first
possibility. The algorithm in this case consists of listing
all e-mail addresses, extracting the TLD from them, re-
jecting those TLD that cannot be directly assigned to
a country (.com, .net, .org, etc.) or those who are from
“fake” countries (.nu, etc.), and finally looking at the
remaining TLDs and count how often they occur. The
TLD that is more frequent gives a hint about the na-
tionality of the person. Of course this heuristic is spe-
cially bad for US-based actors (since they are not likely
to use the US TLD), and for those using .org or .com
addresses, quite common in libre software projects.

e Another approach is to us whois data for the second
level domain in e-mail address, considering that the
whois contact information (which includes a physical
mail address) is valid as an estimator of the country of
the actor. Of course, this is not always the case.

Other case example of information which can be obtained
from identities is the gender. Usually we can infer the gen-
der from the name of the person. However, in some cases
it depends on the nationality, since some names may be as-
signed to males in one country and to females in another.
This is for instance the case for Andrea, which in Italy is a
male name while in Germany, Spain and other countries is
usually for females.

