
Finding File Clones in FreeBSD Ports Collection

Yusuke Sasaki∗ Tetsuo Yamamoto† Yasuhiro Hayase∗ Katsuro Inoue∗
∗Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
Email: {ysk-ssk,y-hayase,inoue}@ist.osaka-u.ac.jp

†College of Information Science and Engineering, Ritsumeikan University
1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan

Email: tetsuo@cs.ritsumei.ac.jp

Abstract—In Open Source System (OSS) development, soft-
ware components are often imported and reused; for this
reason we might expect that files are copied in multiple projects
(file clones). In this paper, we propose a file clone detection tool
called FCFinder and show the analysis performed with it on
the FreeBSD Ports Collection, a large OSS project collection.
We found many file clones among similar or related projects,
which are systematically introduced from base projects.

Keywords-File clone; hashing; power law; open source sys-
tem.

I. INTRODUCTION

These days, researches on code clones are very active, and
various code clone analysis applications have been explored
including bug finding, refactoring, code evolution trace, and
plagiarism detection[1].

In the past, our laboratory performed an experiment on
large-scale code clone analysis using the distributed code
clone detection system D-CCFinder[2]. One of the targets
of the experiment was the FreeBSD Ports Collection, which
is the set of all the applications of FreeBSD and contains
about 10 GB source code.

In this experiment, we found many cases in which files of
a project are simply copied into another project without any
(or just slight) modifications in comments or headers. We
call these copied files file clones. The characteristics of the
file clones found in a large collection of source code have
not been explored yet.

File clones can be detected using tools such as
CCFinder[3]. However, even with a fast and distributed
environment, code clone detection is still a very resource
intensive process requiring precise string matching.

In this paper, we propose an efficient file clone detection
method using comparison of the tokenized files’ hash values,
and show its implementation as a tool named FCFinder
(File Clone Finder). Using FCFinder, we have analyzed
the FreeBSD’s Ports Collection and found several interesting
details on the nature of the file clones in that collection. Our
findings are summarized in such a way that the distributions
of the file size and file clone set size almost follow the so-
called “power law”, with several anomalous points which
are made by systematical file duplication among projects.

The contributions of this paper are as follows.
1) A hash-based efficient file clone detection method is

proposed and implemented as a tool (FCFinder).
2) A large collection of Open Source Systems (OSS)

is analyzed and visualized from a view point of file
clone.

In Section II, we will show the related works. In Section
III, the approach of FCFinder will be described. Section
IV will discuss the application result of FCFinder to the
FreeBSD Ports Collection. Section V will conclude our
discussion with future works.

II. BACKGROUND

There are various code clone detection methods proposed
as research trials or as practical implemented tools[3], [4] but
their scalability is mostly limited by the amount of available
memory. Livieri et al. have overcome this limitation by
partitioning the source code into small pieces and detecting
the code clones between each pair of pieces[2], [5].

Mayrand et al. proposed a method for code clone de-
tection at function level using 21 metrics[6]. Successively,
they extended their approach to object oriented programs to
efficiently find similar classes[7].

To the best of our knowledge, there is no research aiming
to find file clones in an efficient and scalable way; also, the
distribution of file clones in a large source code collection
is unknown.

III. FCFINDER : FILE CLONE DETECTION TOOL

FCFinder receives in input a collection of source files
and reports the file clones in it. Figure 1 shows the overall
FCFinder’s process.

1) Indexing: for each .h and .c file in the input collec-
tion, FCFinder extract and store several information
(e.g., file sizes and project names).

2) Tokenization: each file is parsed into a token sequence;
comments, redundant white spaces, line breaks, and
carriage returns are removed. During this step, files
shorter than 15 tokens are removed from the input
list.



file clone setsource files Project separation.c, .h file extraction hash tableraw file data Comment removal, etc. token data hash data1) Indexing 2) Tokenization 3) MD5 HashCalculation 4) Hash Table Creation 5) Exact Matching Check
Figure 1. Overview of FCFinder

Table I
MINING TARGET CHARACTERISTICS

Number of files (.c, .h) 1,355,098

Number of projects 7,209

Total size 11.2 GBytes

3) MD5 Hash Calculation: an MD5 hash value[8] is
computed for each tokenized file.

4) Hash Table Creation: a hash table is created with the
computed hash values as keys and the corresponding
file paths as values; files with the same MD5 value
are grouped together.

5) Exact Matching Check: for each key in the table,
the token sequences of the corresponding files are
compared using a simple exact matching; matching
files are reported as a file clone set; the files in a file
clone set have exactly same token sequences.

IV. EXPERIMENT

In this section, we describe the experiment performed
applying FCFinder to the FreeBSD Ports Collection (here-
inafter referred as target), a source code collection used
in one of our previous experiments[2]. These files were
downloaded on Sep. 6th in 2007.The target’s characteristics
are shown in Table I. The target is divided into 45 categories
(database, multimedia, etc. ) and each category consists
of multiple projects (PHP5, emacs, etc.); there are 7,209
projects in the target. As described in III, we used only .c
and .h files in our experiment.

The experiment was performed on a 64 bits FreeBSD
workstation equipped with 2.5GHz CPU and 16 gigabytes
of main memory. During the experiment, the maximum
memory usage was four gigabytes.

A. Preliminary Analysis of the Target

We have analyzed the target in order to expose various
characteristics. Figure 2 shows the size distribution of the
files in the target; the x-axis displays the file size in 10
kilobytes intervals; the y-axis displays the number of files
whose size falls into each interval; both axes use a logarith-
mic scale.

Figure 2 shows that the number of files decreases with the
increasing of the file size. The relationship is almost linear
and it is a case of so-called power law[9], [10] characteristic
of file size distribution. We did a linear regression analysis

file size (Bytes)

num
ber o
f files

1
100

50,000 500,000 5,000,000
A

Figure 2. File size distribution of the target

for figure 2, and its coefficient of determination adjusted for
the degrees of freedom R∗2 becomes about 0.9024.

Area A presents some interesting findings. The area is an
anomaly and does not fit the general power law profile of
the file size distribution. We performed a detailed analysis of
this area finding 59 file clones of some PHP5’s files related
to the time zone management; these files have a size of about
1.6 megabytes, and their clones increased the frequency of
the corresponding size interval.

Figure 3 shows the distribution of the number of .c and
.h files in each project; the x-axis represents the number
of files inside a project; the y-axis shows the number of
projects; both axes use a logarithmic scale.

Area B highlights 59 projects that have 1,316 files and
61 projects that have 1,070 files which are outliers with
respect to the power law distribution. We found that these
projects have many file clones of files in the PHP4 and PHP5
projects.

Similarly, area C highlights 14 projects, each one hav-
ing 6,506 files of cross compilers for RTEMS (Real-Time
Executive for Multiprocessor Systems). A part of the files
in these projects are customized depending on their target
architectures.

B. File Clone Analysis of the Target

We have extracted the file clone information for the target
using FCFinder.

The number of elements in a file clone set is called
“population” of the file clone set.

Figure 4 shows the distribution of the population for each
file clone set in the target; the x-axis displays the population



number of files inside project

num
ber o
f pro
jects

1
52
0
200

5 50 500 5,00010 100

C
B

Figure 3. Distribution of the number of files in project

population of file clone set
numbe
r of file
 clone s
ets

11
00

5 5010 100
E

F
D

Figure 4. Distribution of population of file clone set

of file clone set; the y-axis displays the number of the file
clone sets; both axes use a logarithmic scale.

In the target we found 915,409 file clones, with a total
size of 7,6 Gigabytes; about 68% of the files in the target
are file clones. The reason why the target files have large
numbers of file clones is that large numbers of projects in
the target use many common files among them.

The general tendency is that small population sets are
more frequent than the large population sets. And the
coefficient of determination R∗2 for figure 4 with a linear re-
gression analysis becomes about 0.8508.There are, however,
several exceptions.

Area D highlights the file clone sets containing the files
corresponding to area A in Figure 2.

Area E marks the file clone sets of 419 different files
belonging to the PHP4 project or PHP5 project; each of these
files has 120 copies. Area F corresponds to PHP project’s
files duplicated 240 times.

Figure 5 presents the distribution of the file clones in each
project. The x-axis displays the number of file clones in
a project; intra-project file clones are ignored. The y-axis
displays the number of projects with such amount of file
clones. The average number of file clones per project is 126.

number of file clones in projects (clones inside project are excluded)numbe
r of pro
jects w
ith file c
lones

15
5050
0

5 50 500 5,00010 100 1,000
H

G

Figure 5. Distribution of file clones in project

This graph shows that the number of projects with a specified
amount of file clones decreases as the number of file clones
increases. The coefficient of determination R∗2 for figure 4
with a linear regression analysis becomes about 0.8263.

Area G marks PHP related projects corresponding to area
B in Figure 3 and area D in Figure 4.

Figure 6 shows some of the relations between the projects
corresponding to area H. Each node represents a project and
each edge represents the number of file clones between two
projects.

Figure 6 (a) shows the case of GNU Compiler Collection
projects: gcc41, gcc41-withgcjawt (java), gcc42, and gfor-
tran. Three of those share 7,764 file clones.

Figure 6 (b) shows the case of OpenOffice.org where three
related projects share between 7,440 and 8,101 files.

Figure 6 (c) shows that Thunderbird, Firefox, Firefox-
devel, Seamonkey (an integrated network tool), and XUL-
Runner (application development kit) share about 6,000 files;
these are different projects sharing the same code base.

C. Evaluation of FCFinder output

We have randomly chosen 50 file clone sets from the
analysis result of the target, and performed a manual in-
vestigation. We have found that those file clones correspond
to files that are syntactically identical after they have been
tokenized.

We have also randomly chosen 83 file clone pairs from
the CCFinder result for the same target. We verified that all
of those file pairs have been detected by FCFinder. Both
precision and recall of FCFinder are 100% with respect
to the results of CCFinder; however, we need to extend the
number of samples to strengthen this evaluation.

D. Analysis Time

Table II shows the running time for the different stages
of our experiment. In our previous experiment using 80 PC
cluster machines for the same target analysis, it took about
51 hours to complete[2]. Assuming a linear relationship
between the number of computers used and the running time,



(a)

(b)

(c)

• Nodes show the projects.
• Edges between projects show the number of file clones between two projects.

Figure 6. Project relations with file clones

Table II
ANALYSIS TIME

Step Time
Indexing

9.42h
Tokenization

MD5 Hash Calculation
1.13h

Hash Table Creation

Exact Matching Check 6.61 h

Total 17.16 h

the same analysis performed with a single computer will
require about 40 days. In the experiment with FCFinder,
it took only 17.16 hours with a single workstation, as
shown in Table II. This is due to the difference of analysis
objectives such that D-CCFinder computes all the code
clones including code fragments, while FCFinder finds
only file clones. This reduced the computation complexity,
and allowed a light-weight implementation using existing
hashing and database tools. Further improvement of the
FCFinder’s performance will require intensive usage of
the cache of the database with careful tuning.

V. CONCLUSION

We have implemented an efficient file clone detector
called FCFinder, and applied it to the FreeBSD Ports Col-
lection. The experiment allowed us to find several interesting

characteristics of the file sizes and file clones distributions.
Our findings have been summarized in such a way that the
distributions of the file size, file clone set population, and
project’s file clones are shown to follow the power law;
anomalies in the distribution have been proven to be caused
by systematic duplication of file among projects.

File clone analysis is very important in order to know the
relationships between different software projects. Through
file clones, we can investigate the evolution of projects and
migration of legacy files.

As a future work, we plan to improve the file tokenization
process to allow for small differences in the source code’s
syntax, such as differences in identifiers and constants nam-
ing.

ACKNOWLEDGMENT

We are grateful to Dr. Simone Livieri and Dr. Makoto Ichii
for their useful comments.This work has been partially supported
by Japan Society for the Promotion of Science, Grant-in-Aid for
Scientific Research (A) (No.21240002), and also by MEXT Stage
Project, the Development of Next Generation IT Infrastructure.

REFERENCES

[1] 3rd International Workshop on Software Clones,
Kaiserslautern, Germany, 2009. [Online]. Available:
http://www.informatik.uni-bremen.de/st/IWSC/

[2] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, “Very-large
scale code clone analysis and visualization of open source
programs using distributed CCFinder: D-CCFinder,” in 29th
IEEE International Conference on Software Engineering,
Minneapolis, MN, 2007, pp. 106–115.

[3] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A
multilinguistic token-based code clone detection system for
large scale source code,” IEEE Transactions on Software
Engineering, vol. 28, no. 7, pp. 654–670, 2002.

[4] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and evaluation of clone detection tools,” IEEE
Transactions on Software Engineering, vol. 33, no. 9, pp.
577–591, 2007.

[5] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue, “Analysis
of the linux kernel evolution using code clone coverage,” in
4th International Workshop on Mining Software Repositories,
Minneapolis, MN, 2007, pp. 22.1–4.

[6] J. Mayrand, C. Leblanc, and E. M. Merlo, “Experiment on the
automatic detection of function clones in a software system
using metrics,” in 12th IEEE International Conference on
Software Maintenance, Monterey, CA, 1996, pp. 244–253.

[7] E. Merlo, G. Antoniol, M. D. Penta, and V. F. Rollo, “Linear
complexity object-oriented similarity for clone detection and
software evolution analyses,” in 20th IEEE International
Conference on Software Maintenance, Illinois, CA, 2004, pp.
412–416.

[8] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC
1321 (Informational), Internet Engineering Task Force, Apr.
1992. [Online]. Available: http://www.ietf.org/rfc/rfc1321.txt

[9] M. Mitzenmacher, “A brief history of generative models for
power law and lognormal distributions,” Internet Mathemat-
ics, vol. 1, no. 2, pp. 226–251, 2003.

[10] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws
in a large object-oriented software system,” IEEE Transac-
tions on Software Engineering, vol. 33, pp. 687–708, 2007.


