
Applying Social Network Analysis to the Information in CVS Repositories

Luis Lopez-Fernandez, Gregorio Robles, Jesus M. Gonzalez-Barahona
GSyC, Universidad Rey Juan Carlos
{llopez,grex,jgb}@gsyc.escet.urjc.es

Abstract

The huge quantities of data available in the CVS reposi-
tories of large, long-lived libre (free, open source) software
projects, and the many interrelationships among those data
offer opportunities for extracting large amounts of valuable
information about their structure, evolution and internal
processes. Unfortunately, the sheer volume of that informa-
tion renders it almost unusable without applying method-
ologies which highlight the relevant information for a given
aspect of the project. In this paper, we propose the use of
a well known set of methodologies (social network anal-
ysis) for characterizing libre software projects, their evo-
lution over time and their internal structure. In addition,
we show how we have applied such methodologies to real
cases, and extract some preliminary conclusions from that
experience.
Keywords: source code repositories, visualization tech-

niques, complex networks, libre software engineering

1 Introduction

The study and characterization of complex systems is an
active research area, with many interesting open problems.
Special attention has been paid recently to techniques based
on network analysis, thanks to their power to capture some
important characteristics and relationships. Network char-
acterization is widely used in many scientific and techno-
logical disciplines, ranging from neurobiology [14] to com-
puter networks [1] [3] or linguistics [9] (to mention just
some examples). In this paper we apply this kind of analy-
sis to software projects, using as a base the data available in
their source code versioning repository (usually CVS). For-
tunately, most large (both in code size and number of devel-
opers) libre (free, open source) software projects maintain
such repositories, and grant public access to them.

The information in the CVS repositories of libre soft-
ware projects has been gathered and analyzed using several
methodologies [12] [5], but still many other approaches are
possible. Among them, we explore here how to apply some

techniques already common in the traditional (social) net-
work analysis. The proposed approach is based on consider-
ing either modules (usually CVS directories) or developers
(commiters to the CVS) as vertices, and the number of com-
mon commits as the weight of the link between any two ver-
tices (see section 3 for a more detailed definition). This way,
we end up with a weighted graph which captures some rela-
tionships between developers or modules, in which charac-
teristics as information flow or communities can be studied.

There have been some other works analyzing social net-
works in the libre software world. [7] hypothesizes that the
organization of libre software projects can be modeled as
self-organizing social networks and shows that this seems
to be true at least when studying SourceForge projects.
[6] proposes also a sort of network analysis for libre soft-
ware projects, but considering source dependencies be-
tween modules. Our approach explores how to apply those
network analysis techniques in a more comprehensive and
complete way. To expose it, we will start by introducing
some basic concepts of social network analysis which are
used later (section 2), and the definition of the networks we
consider 3. In section 4 we introduce the characterization
we propose for those networks, and later, in section 5, we
show some examples of the application of that characteri-
zation to Apache, GNOME and KDE. To finish, we offer
some conclusions and discuss some future work.

2 Basic concepts on Social Network Analysis

The Theory of Complex Networks is based on repre-
senting complex systems as graphs. There are many ex-
amples in the literature where this approach has been suc-
cessfully used in very different scientific and technologi-
cal disciplines, identifying vertices and links as relevant for
each specific domain. For example, in ecological networks
each vertex may represent a particular specie, with a link
between two species if one of them “eats” the other. When
dealing with social networks, we may identify vertices with
persons or groups of people, considering a link when there
is some kind of relationship between them.

Among the different kinds of networks that can be con-

101



sidered, in this paper, we use affiliation networks. In affil-
iation networks there are two types of vertices: actors and
groups. When we represent the network in terms of actors,
each vertex is associated with a particular person and two
vertices are linked together when they belong to the same
group of people. When we represent the network in terms
of groups, each vertex is associated with a group and two
groups are linked through an edge when there is, at least,
one person belonging to both at the same time.

Social networks can be directed (when the relationship
between any two vertices is one way, like “is a boss of”) or
undirected (when it is bidirectional, like “live together”). In
addition, they can be weighted (each edge has an associated
numeric value) or unweighted (each edge exists or not).

3 Definition of the networks of developers
and modules

In the approach we propose, for each project we build
two networks using the commit information of the CVS sys-
tem. Both correspond to the two sides of an affiliation net-
work obtained when we consider commiters and modules in
libre software projects. In both cases we consider weighted
undirected networks as follows:

• Commiter network. Each vertex corresponds to
a particular commiter (usually, a developer of the
project). Two commiters are linked when they have
contributed to at least one common module, being
the weight of the corresponding edge the number of
commits performed by both developers to all common
modules.

• Module network. Vertices represent a software mod-
ule of the project. Two modules are linked when there
is at least one commiter who has contributed to both of
them. Edges are weighted by the total number of com-
mits performed by common commiters to both mod-
ules.

The definition of what is a module will be different from
project to project, but usually will correspond to top level
directories in the CVS repository. In the case of both net-
works, the weight of each edge (degree of relationship) re-
flects the closeness of two vertices. The higher it is, the
stronger the relationship between the given two vertices.
We may also define the cost of relationship between any two
vertices as the inverse of the degree of relationship. That
cost of relationship is a measure of the “distance” between
them, in the sense that the higher this parameter the more
difficult to reach one vertex from the other. For this reason
we use the cost of relationship as the base for defining a dis-
tance in our networks. Given a pair of vertices i and j, we
define the distance between them as di j = ∑e∈Pi, j ce, where

Pi, j is the set of all the edges in the shortest path from i to
j, and ce is the cost of relationship of edge e of such path.

4 Characterization of the networks consid-
ered for each project

For our analysis, we have considered a number of param-
eters characterizing the topology of the networks. In partic-
ular, we use the following definitions (which are common
in the analysis of affiliation networks):

• Degree of a vertex (k): number of edges connected to
that vertex. In the case of commiter networks, for each
commiter it represents the number of companion com-
miters, contributing to the same modules as the given
one. In the case of module networks, it is the total
number of modules with which the given one shares
commiters.

• Weighted degree of a vertex: sum of the weights of
all edges connected to that particular vertex. This can
be interpreted as the degree of relationship of a given
vertex with its direct neighborhood.

• Distance centrality of a vertex [13] (Dc): proximity
to the rest of vertices in the network. It is also called
closeness centrality: the higher its value, the closer
that vertex is to the others (on average). Given a vertex
v and a graph G, it can be defined as:

Dc(v) =
1

∑t∈G dG(v,t)
, (1)

where dG(v,t) is the minimum distance from vertex v
to vertex t (the sum of the costs of relationship of all
edges in the shortest path from v to t). The distance
centrality can be interpreted as a measurement of the
influence of a vertex in a graph: the higher its value,
the easiest it is for that vertex to spread information
into that network. Let’s observe that when a given ver-
tex is “far” from the others, it has a low degree of rela-
tionship (i.e. a high cost of relationship) with the rest.
In that case the term ∑t∈G dG(v,t) will be high, mean-
ing that the vertex is not placed in a central position in
the network, being its distance centrality low. This pa-
rameter can be used to identify modules or commiters
which are well related in a project.

• Betweenness centrality of a vertex [4, 2]: The be-
tweenness centrality of a vertex Bc is a measurement
of the number of shortest paths traversing that partic-
ular vertex. Given a vertex v and a graph G, it can be
defined as:

Bc(v) = ∑
s "=v"=t/inG

σst(v)
σst

, (2)

102



Degree
0 50 100 150 200 250 300 350 400 450

0

20

40

60

80

100

120

Figure 1. Distribution of the degrees of com-
miters in Apache, circa February 2004

where σst(v) is the number of shortest paths from s to
t going through v, and σst is the total number of short-
est paths between s and t. The betweenness centrality
of a vertex can be interpreted as a measurement of the
importance of a vertex in a given graph, in the sense
that vertices with a high value of this parameter are in-
termediate nodes for the communication of the rest. In
the case of weighted networks, multiple shortest paths
between any pair of vertices are highly improbable.
So, the term σst (v)

σst takes usually only two values: 1,
if the shortest path between s and t goes through v,
or 0 otherwise. Therefore, the betweenness centrality
is just a measurement of the number of shortest paths
traversing a given vertex.

• Clustering coefficient of a vertex [14]: The cluster-
ing coefficient c of a vertex measures the connectiv-
ity of its direct neighborhood. Given a vertex v in a
graph G, it can be defined as the probability that any
two neighbors of v be connected. Hence

c(v) =
E(v)

kv(kv−1)
, (3)

where kv is the number of neighbors of v and E(v) is
the number of edges between those neighbors. A high
clustering coefficient in a network indicates that this
network has a tendency to form cliques. Observe that
the clustering coefficient does not consider the weight
of edges.

• Weighted clustering coefficient of a vertex [10]: The
weighted clustering coefficient cw of a vertex is an
attempt to generalize the concept of clustering coef-
ficient to weighted networks. Given a vertex v in a
weighted graph G it can be defined as:

cw(v) = ∑
i"= j∈NG(v)

wi j
1

kv(kv−1)
, (4)

cc (clustering coeficient)
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

5

10

15

20

25

30

cc (clustering coeficient)
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

0

20

40

60

80

100

120

Figure 2. Clustering coefficient of modules
in Apache (top) and GNOME (bottom), circa
February 2004 (distribution)

where NG(v) is the neighborhood of v in G (the sub-
graph of all vertices connected to v), wi j is the de-
gree of relationship of the link between neighbor i and
neighbor j (wi j = 0 if there are no link), and kv is the
number of neighbors. The weighted clustering coeffi-
cient can be interpreted as a measurement of the local
efficiency of the network around a particular vertex.
For our networks, remark that the term ∑i"= j∈NG(v)wi j
can be seen as the total degree of relationship in the
neighborhood of vertex v, while 1

kv(kv−1) is the total
number of relationships that could exists in that neigh-
borhood.

5 Case studies: Apache, GNOME and KDE
modules

Apache, GNOME and KDE are all well known libre soft-
ware projects, large in size (each well above the million
lines of code), in which several subprojects (modules) can
be identified. They have already been studied (for instance
in [11] and [8]) from several points of view. We have used
them to apply our methodology, and in this section some re-
sults of that application are shown (just an example of how
a project can be characterized from several points of view).

In figure 1 the distribution of the degree of relationship
for each commiter in the Apache project is shown as an ex-

103



Weighted clustering coeficient
0 5000 10000 15000 20000

0

5

10

15

20

25

30

Weighted clustering coeficient
0 20000 40000 60000 80000 100000 120000 140000

0

50

100

150

200

250

Weighted clustering coeficient
0 20000 40000 60000 80000 100000

0

2

4

6

8

10

12

14

Figure 3. Weighted clustering coefficient of
modules in Apache (top), GNOME (middle),
and KDE (bottom), circa February 2004 (dis-
tribution)

ample of how developers can be characterized by how they
relate to each other. It is easy to appreciate how that dis-
tributions shows two peaks, one between 20-40 and other
around 70-90. Only a handful of developers has direct rela-
tionship with more than 200 companions.

In figure 2 the distribution of the clustering coefficient of
modules in Apache and GNOME is compared. Although in
both cases there is a peak in 1 (meaning that in many cases
the direct neighborhood of a module is completely linked
together), there is an interesting peak in GNOME around
0.77, which should be studied but probably corresponds to
a sparse-connected cluster.

Figure 3 shows how, despite differences in the distri-
bution of the clustering coefficient, the distribution of the
weighted clustering coefficient has more similar shapes,
with a quick rise from zero to a maximum, and a slower,
asymptotic decline later. This would mean than in the three
projects most nodes (those near the peak) are in clusters
with a similar interconnection structure.

As a final example, on the evolution of a project, fig-
ure 4 shows the distribution of the connection degree of four
snapshots of the Apache project. It can be seen how there is
a tremendous growth in the connection degree of the most
connected module (from 34 in 2001 to more than 100 in
2004), while the shape of the distribution changes over time:
from 2001 to 2002 a two-peak structure develops, which
slowly changes into a one-peak distribution through 2003
and 2004.

For lack of space we do not offer it here, but the anal-
ysis of the top modules and developers for each parameter
considered gives a lot of insight on which ones are helping
to maintain the projects together, to deal with information
flows, or are the aggregators of clusters.

6 Conclusions and further work

In this paper we have shown a methodology which ap-
plies affiliation network analysis to data gathered from CVS
repositories. We also offer some examples of how it can
be applied to characterize libre software projects. From a
more general point of view, we have learned (demonstra-
tion not shown in this paper) that in the three analyzed cases
(Apache, GNOME and KDE), both the commiters and the
modules networks are small-world networks, which means
that all the theory developed for them applies here.

Our group is still starting to explore the many paths open
by this methodology. Currently, we are interested in ana-
lyzing a large number of projects, looking for correlations
which can help us to make estimations and predictions of
the future evolution of projects. We are also looking for
characterizations of projects based on the parameters of the
curves that interpolate the distributions of the parameters
we are studying. And of course, applying other techniques

104



Degree
0 5 10 15 20 25 30 35

0

1

2

3

4

5

6

7

8

Degree
0 10 20 30 40 50 60 70

0

2

4

6

8

10

12

Degree
0 10 20 30 40 50 60 70 80 90

0

2

4

6

8

10

12

14

Degree
0 20 40 60 80 100 120

0

2

4

6

8

10

12

14

Figure 4. Connection degree of modules in
Apache circa February from2001 (top) to 2004
(bottom) (distribution)

usual in small-world and other social networks.
We feel that these research paths will allow for the more

complete understanding of how libre software projects dif-
ferentiate from each other, and also will help to identify
common patterns and invariants.

References

[1] R. Albert, A. L. Barabsi, H. Jeong, and G. Bianconi. Power-
law distribution of the world wide web. Science, 287, 2000.

[2] J. Anthonisse. The rush in a directed graph. Technical report,
Stichting Mathemastisch Centrum, Amsterdam, The Nether-
lands, 1971.

[3] Cancho and R. Sole. The small world of human language.
Proceedings of the Royal Society of London. Series B, Bio-
logical Sciences, 268:2261–2265, Nov. 2001.

[4] C. Freeman. A set of measures of centrality based on be-
tweenness. Sociometry 40, 35-41, 1977.

[5] D. Germn and A. Mockus. Automating the measurement of
open source projects. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Con-
ference on Software Engineering, Portland, Oregon, 2003.

[6] R. A. Ghosh. Clustering and dependencies in free/open
source software development: Methodology and tools. First
Monday, 2003.
http://www.firstmonday.dk/issues/issue8_4/
ghosh/index.html.

[7] V. F. Greg Madey and R. Tynan. The open source develop-
ment phenomenon: An analysis based on social network the-
ory. In Americas Conference on Information Systems (AM-
CIS2002), pages 1806–1813, Dallas, TX, USA, 2002.
http://www.nd.edu/˜oss/Papers/amcis_oss.pdf.

[8] S. Koch and G. Schneider. Effort, cooperation and coordina-
tion in an open source software project: Gnome. Information
Systems Journal, 12(1):27–42, 2002.

[9] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins.
The web and social networks. IEEE Computer, 35(11):32–
36, 2002.

[10] V. Latora and M. Marchiori. Economic small-world behav-
ior in weighted networks. Euro Physics Journal B 32, 249-
263, 2003.

[11] A. Mockus, R. Fielding, and J. Herbsleb. A case study of
open source software development: The Apache server. In
Proceedings of the 22nd International Conference on Soft-
ware Engineering (ICSE 2000), pages 263–272, Limerick,
Ireland, 2000.

[12] G. Robles-Martinez, J. M. Gonzalez-Barahona, J. Centeno-
Gonzalez, V. Matellan-Olivera, and L. Rodero-Merino.
Studying the evolution of libre software projects using pub-
licly available data. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Con-
ference on Software Engineering, pages 111–115, Portland,
Oregon, 2003.

[13] G. Sabidussi. The centrality index of a graph. Psychometirka
31, 581-606, 1996.

[14] D. Watts and S. Strogatz. Collective dynamics of small-
world networks. Nature 393, 440-442, 1998.

105


