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Abstract 
We empirically examine the relationship between 

software design modularity and software quality in 
open source software (OSS) development projects. 
Conventional wisdom suggests that degree of software 
modularity affects software quality. An analysis of 203 
software releases in 46 OSS projects hosted on 
SourceForge.net lends support for a more complex 
relationship between software modularity and software 
quality than conventional wisdom suggests. We find 
that software modularity is associated with reduced 
software complexity, an increased number of static 
software bugs, and a mixed relationship with the 
percentage of bugs closed. We do not find empirical 
evidence supporting any relationship between 
modularity and other measures of customer 
satisfaction. In addition to empirically testing the 
relationship between modularity and quality, we 
introduce new measures of software modularity and 
software quality. Implications are developed for the 
theory of modularity and the practice of software 
development.  
 
1. Introduction  
 

For years, researchers and practitioners alike have 
espoused the importance and significance of the 
relationship between software design and software 
quality (e.g., [28] [18] [19] [29]). Theoretically, 
altering the design of a product should directly affect 
work processes and software quality by influencing the 
information processing requirements of the software 
developer and coordination requirements among 
programmers [9] [13]. One important concept used to 
characterize software architecture, degree of 
modularity, has been theorized to be particularly 
important. In the domain of conventional software 
development, increasing modularity is theorized to 
increase software quality and reduce programmatic 
effort [19] [24]. However, we lack systematic 
empirical evidence to support these claims [12] [14]. 
Previous empirical work primarily consists of case 
studies, providing anecdotal evidence at best as 
theoretical support. One reason for the lack of 

empirical tests of this conventional wisdom stems from 
the difficulty associated with measuring degree of 
modularity, because accurately assessing the patterns 
of interdependencies that exist within the software 
architecture proves challenging. 

Community-based Open Source Software (OSS) 
development is a unique context in which to examine 
the relationship between software design and software 
quality. OSS volunteers around the world use the 
Internet to contribute software, which is then freely 
available for others to use and alter. Prominent and 
successful examples of OSS projects include Apache, 
Linux, and Mozilla Firefox [27] [26].  

We study the effects of software design on software 
quality in the context of community-based OSS 
development for several reasons. First, community-
based OSS development is relatively free of formal 
organizational influences, so the independent effects of 
software architecture should be easier to detect and 
model. Second, as previously mentioned, OSS is a 
well-established and important phenomenon itself, 
with many successful projects. Third, the population of 
OSS projects is sufficiently large and varied that it is 
possible to compare differences in software quality. 
Finally, because OSS development is conducted via the 
Internet, characteristics of the software and software 
quality can be observed and measured relatively easily 
and over time. We empirically examine how the design 
characteristics of the software itself influence software 
quality in community-based OSS projects over time. 
We also introduce new measures of modularity and 
software quality to empirically examine this 
relationship. 
 
2. Theoretical Perspective  
 

Software modularity is an important concept used 
to characterize software design, and describes the 
degree to which components within a product are 
independent of one another. This degree of component 
independence should then directly affect task 
coordination and independence in software 
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development, and subsequently affect development 
outcomes, such as software quality.1 We therefore 
study this characteristic of software design, degree of 
modularity, and empirically examine the research 
question: How does degree of software modularity 
affect software quality in community-based OSS 
projects? 

Modularity describes the degree to which 
components within software are independent or loosely 
coupled from one another, yet function as an integrated 
whole using interfaces [2] [18]. Interfaces describe in 
detail how the [components] will interact, including 
how they will fit together, connect, and communicate  
(p. 86, [1]). Modularity is related to the architecture of 
the software, defined as the scheme by which the 
function of the [software] is allocated to [software] 
components  (p. 240, [25]). Components refer to a 
subassembly  or distinct region of the product  (p. 

421, [25]). Relationships among individual 
components are described by coupling, such that two 
components are coupled if a change made to one 
component requires a change to the other component in 
order for the overall [software] to work correctly  (p. 
422, [25]). Software with a low degree of modularity is 
considered highly integrated, because the functionality 
is tightly coupled and interdependent, regardless of the 
number of components.  

Theoretically, software modularity should affect 
software development and software quality. 
Modularity facilitates task decomposition, which is a 
strategy for efficiently organizing the work necessary 
to create the software [21]. More specifically, as 
software becomes more modular, the process of 
dividing a larger task into smaller subtasks becomes 
easier, and tasks become easier to identify. In the 
context of conventional software development, prior 
work has claimed that software modularity improves 
software quality and reduces programmatic effort in 
both the development and maintenance of centrally-
developed and hierarchically-managed software [19] 
[24]. It therefore seems natural to expect the degree of 
software modularity to also affect software quality in 
OSS projects. 

From the literature, then, degree of software 
modularity should be positively related to software 
quality. Following from the definition of modularity, 
all other things being equal, more modular software 
products have more components that are more loosely 
coupled. The probability that a change to one 
component will inadvertently affect another 
component, thus introducing an error, should decrease 

                                                 
1 While this paper focuses on the role of modularity in software 
development, these ideas are also the conventional wisdom in the 
development of tangible products. 

in more modular software. As the number of 
components increases in more modular software, 
functionality becomes more specialized and isolated 
within each of the components, and each component 
contains less functionality on average [2] [19] [20] 
[25]. In addition, smaller and more loosely coupled 
components foster more rapid problem resolution 
because problem identification is more likely localized 
to specific modules [19]. As the ease of problem 
identification and resolution increases with increasing 
modularity, a larger number of existing problems 
should be identified and resolved within the software 
application, thus increasing software quality in more 
modular software. 
 
3. Measurement 
 
3.1. Overview 
 

Researchers have noted the difficulty in measuring 
degree of modularity [12] [14]. We therefore provide a 
detailed explanation of the measure introduced and 
compare it to other measures that have been proposed 
to evaluate degree of software modularity. In addition, 
because software quality has multiple dimensions, we 
discuss the measures used to assess two dimensions of 
software quality in this paper: intrinsic quality and 
customer satisfaction. 
 
3.2. Software modularity 
 

OSS provides a unique opportunity to more 
accurately describe software components and their 
relationships in a single application. Specifically, it is 
possible to assess the degree of independence, and thus 
modularity, among software classes by examining 
function calls among classes in the source code. 
Several researchers have used this information to 
measure software modularity at the class or file level 
[12] [13] [14]. While these measures provide detailed 
information regarding software functionality, they do 
not capture whether classes or files communicate via 
interfaces, a critical concept used to achieve 
component independence in modular software. 
Without addressing the types of relationships among 
classes or files, their measure cannot correctly assess 
the degree of software modularity. In addition, 
individual classes or files do not function as modules 
or components. In practice, programmers use groups of 
files or classes, called packages in Java, to implement 
software functionality [4] [8]. Classes within these 
packages should be interdependent, and classes 
contained in different packages should be independent. 
Programmers implement independence among 
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packages using interfaces. Therefore, we argue that 
measuring the degree of software modularity using 
packages as the module or component, not classes or 
files, and capturing the extent to which interfaces are 
used to achieve independence is a more appropriate 
assessment of software modularity. 

Many people have written applications to extract 
information about class relationships, and [15] 
proposed a method for mathematically evaluating this 
information at the package level as a measure of 
software design. The measure assesses the degree to 
which Java programming constructs (e.g. interfaces 
and concrete classes) are used to achieve independence 
among packages. Practitioners support and recommend 
the use of [15] s measure and the information used to 
make the calculation to evaluate software design. In 
fact, several programs have been written to 
automatically extract relevant metrics from the source 
code (e.g. JDepend, NDepend, Metrics, VizzAnalyzer) 
(e.g. [6] [7] [11]).  

We use [15] s calculation as our measure of degree 
of modularity. To do this, we derive various metrics 
from the source code for each package contained in the 
application, which are then included in a series of 
calculations.2 We extract these metrics from each 
release using a static source code analysis tool, the 
Metrics Eclipse plug-in.3 These include the total 
number of lines of code (LOC), number of concrete 
classes, number of abstract classes, afferent coupling, 
and efferent coupling.4 Afferent coupling (AC) is a 
measure of a package s responsibility, and counts the 
number of other packages within the application that 
call (depend on) classes within the given package. 
Efferent coupling (EC) is a measure of a package s 
independence, and counts the number of other 
packages within the project that classes within the 
given package call (depend on). Higher values of AC 
indicate higher responsibility and higher values of EC 
indicate lower independence. 

Using these metrics, we then calculate each 
package s abstractness (A), which is the ratio of the 
number of abstract classes to total classes within a 
package. A value of zero indicates a package is 
comprised of only concrete classes, and a value of 1 

                                                 
2 We only analyze source code that is included in the core of the 
application. We therefore exclude obvious plug-ins designed to port 
the code to other platforms and applications. Code of this nature is 
generally included in downloadable files and therefore easily 
identifiable. We also exclude source code used to unit test the 
application. Generally this code is included in a separate package or 
separate folder, and common naming conventions (e.g. Test ) 
facilitate identification. 
3 http://metrics.sourceforge.net/ 
4 Concrete  classes contain the actual programming logic or 
functionality, while abstract  classes act as the interfaces between 
concrete classes. 

indicates a package is comprised of only abstract 
classes. Next we calculate Instability (I), which is the 
ratio of a package s independence to total 
independence and responsibility [EC / (EC + AC)]. A 
value of zero indicates complete stability (changes may 
be made to other packages without affecting this 
package) and a value of one indicates complete 
instability (changes made to other packages will likely 
directly affect this package). The last step in 
calculating this measure is to calculate the distance 
from the main sequence  (D), which measures the 
balance between abstractness and instability in a 
package. It is the perpendicular distance of a package 
from the idealized line A + I = 1. A value of zero 
indicates ideal balance (good design), and one 
indicates complete imbalance (poor design). 

In this paper, Drelease is used as a proxy for source 
code modularity because it evaluates the type of 
relationships among software packages. Because the 
sizes of packages within an application vary, the 
implications of each individual package s design may 
not be equal. Therefore, we weight each package s D 
by the log of the LOC within the package to account 
for these differences. To calculate Drelease for each 
software application, we sum each package s weighted 
D and then divide by the sum of the log of the LOC of 
all packages for every package i in the release. Finally, 
we subtract this from one to get Drelease, so that larger 
values indicate higher degrees of modularity: 

Drelease =  1   Di * log(LOCi) 
 log(LOCi) 

To the best of our knowledge, no previous research on 
OSS development has used this measure. 
 
3.3. Software quality 
 

Software quality consists of several dimensions, 
such as intrinsic quality and customer satisfaction [10]. 
Intrinsic quality refers to the inherent quality of the 
software itself (e.g. does the program work properly 
when running, or does it break or crash 
unexpectedly?). Customer satisfaction refers to user 
perceptions of quality (e.g. does the program contain 
desired features? Does the program work when I use 
it?). We use two measures to assess intrinsic software 
quality and three measures to assess customer 
satisfaction. 

First, we introduce two measures of intrinsic 
software quality not previously reported in the OSS 
literature: number of static bugs and software 
complexity.5 Bugs in software refer to problems or 

                                                 
5 Both measures are frequently used in software engineering (e.g., [5] 
[10] [22]). Number of bugs  or functional defects is a common 
operationalization of intrinsic quality [10]. Other traditional 
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errors with the program that prevent it from running 
properly. Examples include logical flaws, inappropriate 
use of programming constructs, or memory leaks. Any 
of these problems reduce software quality. Software 
complexity is an additional software design 
characteristic that affects the difficulty associated with 
problem identification and resolution, testability, and 
maintenance provisioning over time. Higher software 
complexity reflects lower software quality. Both 
measures are derived from objective evaluations of the 
source code included in each software release.  

We first assess the number of bugs or defects in the 
source code using two static source code analysis tools, 
FindBugs and PMD.6 Both tools provide a list of the 
problems found, and the location of each problem in 
the source code. The results of these static source code 
analysis tools are combined because each uses a 
different algorithm to identify different types of 
problems or defects within the source code. This 
measure should be interpreted in a relative sense, as 
each tool exhibits some degree of false positive and 
false negative reporting. Number of static bugs is 
therefore a count of the total number of static source 
code bugs found by both programs for a given software 
release. This total is then divided by the log of the total 
LOC in the release to control for software size. 

In addition to the number of bugs or defects in a 
software program, software complexity also reflects 
the intrinsic quality of the software written. Software 
complexity describes the complexity of the control 
flow logic within an application by examining the 
number of linearly independent paths within the source 
code. A greater number of logic paths indicate greater 
complexity. We use McCabe s Cyclomatic Complexity 
measure, a standard metric used in software 
engineering, to measure software complexity in this 
paper [16]. We calculate the average software 
complexity of each release using information from the 
Metrics Eclipse plug-in. Both intrinsic measures of 
quality assess the total release code quality. 

Second, we use three measures to assess software 
quality associated with customer satisfaction as 
previously identified in OSS research as a proxy for 
software quality and OSS project success [3].7 Many 
OSS projects use a specific communication tool, a bug 
tracker, to encourage users to voluntarily report errors 

                                                                            
measures of intrinsic quality address conformance to stated 
requirements [10]. Because most OSS products do not implement 
specific requirements, we do not use this as a measure of software 
quality. 
6 http://findbugs.sourceforge.net/ and http://pmd.sourceforge.net/ 
7 Reports of problems by customers and customer satisfaction with 
the software are two common operationalizations of customer 
satisfaction [10]. We do not report direct measures of customer 
satisfaction in this paper. 

found in the software. 8 Once a bug has been addressed 
or solved by project developers, the bug report will be 
“closed.” We calculate three measures of software 
quality using this bug report information. First, we 
calculate the number of bugs reported as the number of 
bug reports created for a given software release. A 
greater number of problems reported by users should 
reflect lower customer satisfaction and thus lower 
software quality. We assess two additional measures of 
customer satisfaction: percentage of bugs closed and 
time to close bugs.9 Increasing the percentage of bugs 
closed and decreasing the time to close bugs should 
reflect higher customer satisfaction, indicating that 
when problems are reported they are fixed and closed 
in a timely fashion. However, the number of bugs 
reported is a function of the number of people using 
the software, and may not reflect the inherent quality 
of the software. Therefore, because projects with 
smaller communities may experience fewer bug reports 
because of the smaller user base, fewer bug reports 
may not necessarily indicate better software quality. 
We therefore weighted all three bug report measures 
by the number of downloads for each release to 
account for differences in community size and number 
of people reporting bugs, which has not been done 
previously to our knowledge.10 
 
4. Method  
 
4.1. Overview 
 

To examine how software modularity affects 
software quality in community-based OSS projects, we 
require detailed longitudinal information about 
software design and objective measures of software 
quality. OSS projects hosted on SourceForge.net meet 
these requirements. People can freely register any OSS 
project on SourceForge, and subsequently use the suite 

                                                 
8 Many OSS researchers have used community problem reports or 
bug reports as a proxy for software quality. However, not all project 
communities use specific bug tracking tools  some may use email 
lists or discussion boards to manage reported bugs making it difficult 
for researchers to filter identified bugs from other communication. 
Bug reports are also a proxy for run-time errors, as the problems 
identified with the software often result from errors when using the 
software. 
9 We calculate the average time to close bugs only for bug reports 
that have been closed . This is therefore a conservative measure of 
time to fix bugs, as some bugs may remain outstanding with very 
long working periods. 
10 Because we do not have data on the number of downloads per time 
period for each project, we estimate the number of downloads for 
each release using an exponential function and the duration of each 
release. As the project ages and improves, more people are likely to 
download the software as the software matures and more people 
learn about the software, so adoption likely follows an exponential 
function. 
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of tools available to all registered projects, including a 
source code repository, project website, developer 
website, tracker tools, mailing lists, and discussion 
boards. Common availability and use of these tools 
across projects reduces tool differences as a source of 
observed differences in software quality. In addition, 
SourceForge is one of the most popular platforms for 
hosting OSS projects, thus yielding a large population 
of projects from which to draw our sample. Most 
importantly, SourceForge provides a public record of 
the history of each project: all records of 
communication, release history and associated files, 
source code repositories, artifact tracking, etc., are 
publicly available and accessible, providing us with 
our required data of a cross-section of OSS project data 
over time. 

 
4.2. Sample 

 
While SourceForge hosts over 160,000 thousand 

registered projects, not all projects exhibit 
characteristics that correspond to the types of projects 
of interest.  For example, a large fraction of registered 
projects are estimated or known to be a vanity project 
or a project in name only, i.e., they have no developers 
other than the person who registered the project and 
exhibit no development or communication activity. Of 
the remaining real  projects, some are clearly 
controlled by a commercial organization and its 
employees, rather than by volunteers, and thus have a 
commercial incentive and authority to exercise control 
over the project.  In addition, because we examine how 
software modularity affects software quality, it is 
important for each project to have created a working 
program, even if it is very preliminary, to ensure the 
existence of an initial code base from which project 
members could work. Generally speaking, OSS 
projects in later stages of development have distributed 
at least one version, or release, of the software. It is 
also important that the project exhibits some minimum 
degree of development or communication activity 
among project members to ensure a sufficiently large 
pool of potential code contributors.  The most common 
programming language used by the projects registered 
on SourceForge.net are object-oriented programming 
languages, including Java and C++.  In addition, 
object-oriented language skills are the most common 
skills reported by SourceForge.net users. We therefore 
used the following sampling frame to identify an 
appropriate group of projects from which to sample: 
projects that do not exhibit obvious corporate or 
organizational sponsorship or involvement, projects 
with at least one software release in a relatively mature 
development stage (Beta or Production/Stable), 
projects exhibiting a minimum level of project activity, 

and products written only using Java.11 The frame 
includes approximately 180 projects from which a 
random sample of 46 was drawn. For each project, we 
sample each major software release (e.g. 1.x, 2.x) as 
our unit of analysis for a total of 203 releases. Refer to 
Table 1 for characteristics of the projects sampled. 
Table 1. Summary project characteristics 
 Average Std Dev Min Max 
Date 
registered 10/30/02 433 days 12/16/99 7/22/04 

Download 103,973 299,085 1,492 1,985,014
Project 
activity 3,912 8,370 80 37,297 

Target 
audience 80% 41%   

Software 
topic 63% 49%   

License 57% 50%   
Total 
releases 22.8 23.1 4 147 

Releases 
analyzed 6.94 4.13 2 20 

 
4.3. Measures 

 
4.3.1. Modularity. We calculate the degree of 
modularity for each major software release sampled 
using the source code contained in each release. This 
measure is based on [15] s measure of software design 
quality. Refer to Section 3.2 for details of the 
calculation. 

 
4.3.2. Software quality. We use measures of intrinsic 
quality and customer satisfaction to assess software 
quality. To measure intrinsic software quality, we 
calculate the number of static bugs and software 
complexity based on objective evaluations of the source 
code included in the software release using two static 
source code analysis tools.  

To assess customer satisfaction, we use three 
measures of software quality previously identified in 
OSS research as a proxy for software quality and OSS 
project success [3]: number of bugs reported, 
percentage of bugs closed, and time to close bugs. 
Refer to Section 3.3 for details of all software quality 
measures. 

 

                                                 
11 Project activity refers to any communication behavior made by 
OSS project members (e.g. posts to discussion forums, bug trackers, 
email lists, etc.). Projects with at least 75 total posts to any of the 
project communication tools (discussion forums, trackers, and email 
lists) as well as evidence of use of the source code repository were 
included in the sampling frame. 
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4.3.3. Control variables. The age of the project and 
the time between releases likely affects the size of the 
development team and the quantity of effort that can be 
contributed for each release. Because each release 
occurs at a different point in time, two variables are 
thus used to capture the effect of time. First, project 
age captures the number of weeks between the date 
that the project was registered on SourceForge and the 
date that the specified software was released. Second, 
development cycle time is captured by weeks since the 
previous release. This value is always zero for the first 
release of a given project. In addition, the flexibility of 
the OSS license associated with the software has been 
found to affect user interest in the project and software 
development effort [17] [23]. Also, characteristics of 
the type of software being developed and the project 
community may also influence design and quality 
metrics, based on the software requirements and the 
average programming skill level of the project 
community. We therefore use dummy codes to 
represent whether a business-friendly  OSS license is 
used as well as whether the intended audience of the 
software is for computer programmers (e.g. 

Developers, System Administrators). We also use a 
dummy code, software topic, to represent whether the 
type of application being developed is for software 
development or other primarily technical applications 
(e.g. databases, Internet). Refer to Table 2 for summary 
means and correlations of all measures. 
 
5. Results  
 
5.1. Overview 

 
Because our dependent variables were significantly 

skewed, we performed log transformations on all 
dependent variables for the analyses. Refer to Table 2 
for summary means and correlations for degree of 
modularity, all dependent variables, and control 
variables. Since our data is a cross-section of OSS 
projects over time, we use hierarchical linear modeling 
(HLM) to test the relationships between degree of 
modularity and the various measures of software 
quality.  

Table 2. Means and correlations for releases analyzed 
Measures Mean n S.D. 1 2 3 4 5 6 7 8 9 10 
1. Modularity 0.58 203 0.20           

2. Complexity 0.82 180 0.32 -0.35          
3. Number static bugs 6.18 180 0.91 0.44 0.11         
4. Number bugs reported 1.07 146 0.98 0.08 0.09 0.24        
5. Percent bugs closed 11% 198 17% -0.17 -0.03 -0.19 0.36       
6. Time to close bugs 2.66 199 1.81 -0.02 0.29 0.20 0.27 -0.03      
7. Project age 3.65 203 1.67 0.10 -0.03 0.25 0.01 -0.49 0.12     
8. Development cycle 2.22 203 1.51 0.24 -0.02 0.25 0.21 -0.23 0.22 0.63    
9. Intended audience 0.80 203 0.40 0.36 -0.27 -0.07 -0.07 -0.01 -0.17 0.05 0.12   

10. OSS license 0.57 203 0.49 0.31 -0.23 -0.07 0.18 0.05 0.03 0.11 0.17 0.46  

11. Application type 0.76 203 0.42 -0.06 -0.15 -0.30 -0.03 -0.02 -0.09 0.09 0.08 0.24 0.30 
 

We present the results of four models for each 
quality measure to assess the relationship between 
degree of modularity and software quality: Model 1: 
unconditional means (do projects differ in software 
quality?), Model 2: regression with means-as-outcomes 
(does modularity explain differences in quality across 
projects?), Model 3: random coefficient (does 
modularity explain differences in quality within 
projects?), and Model 4: the best fitting model (what 
role does modularity play after accounting for other 

variables?).12  Including modularity and all control 
variables, the full model is represented as follows: 
Level-1 model (release effects): 

Yij = β0j + β1j(Modij) + β2j(Ageij) + β3j(Devij) + rij 
Level-2 model (project effects): 

β0j = γ00 +γ01(Modj) +γ02(Licj) +γ03(Audj) 
+γ04(Topj) + µ0j 

β1j = γ10 +γ11(Modj) +γ12(Licj) +γ13(Audj) 
+γ14(Topj) + µ1j 
                                                 
12 We examined several models using different combinations of 
modularity, control variables, random error covariance structures, 
etc., to identify the most appropriate and best-fitting model. We only 
present the results of the best-fitting model here. 
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β2j = γ20 + µ2j 
β3j = γ30 + µ3j 

where Yij represents software quality (e.g. software 
complexty) for release i in project j, Modij is release 
modularity centered around the project mean, Modj is 
project modularity centered around the grand mean, 
Ageij is the project age for release i in project j, Devij is 
the development cycle time for release i in project j, 
Licj is the license for project j, Audj is the intended 
audience for project j, and Topj is the software topic 
for project j. We used SAS 9.1 (PROC MIXED, 
GLIMMIX, and  GENMOD) to test these models. 

 
5.2. Software complexity 

 
First, we find evidence of significant variation in 

average software complexity (log) across projects 
(0.07, s.e. 0.02, n=180) (see Model 1, Table 3). Sixty 
percent of the variation in complexity can be explained 
by the differences between projects. Second, average 
project modularity is marginally associated with lower 
software complexity (-0.46, s.e. 0.26), and explains 8% 
of project-to-project variation in mean software 
complexity (Model 2). Third, there is no statistically 
significant difference in the relationship between 
modularity and software complexity within projects (-
0.33, s.e. 0.27). However, the slopes representing the 
relationship between modularity and software 
complexity vary significantly across projects (variance 
component is 0.69, s.e. 0.38), explaining 70% of the 
within-project variation in software complexity. The 
best fitting model using repeated measures (Model 4) 
includes significant effects for project-level 
modularity, release-level modularity, and software 
topic. As degree of modularity increases, level of 
complexity both across projects (-0.73, s.e. 0.22) and 
within projects (-0.38, s.e. 0.18) decreases. In addition, 
projects creating applications associated with software 
development exhibit software with lower complexity (-
0.23, s.e. 0.08). Projects significantly differ in average 
software complexity (0.06, s.e. 0.02), and projects 
exhibit significantly different relationships between 
degree of modularity and software complexity (0.46, 
s.e. 0.21).  
Table 3. HLM results for software complexity 
Fixed 
effects 

Model 
1 

Model 
2 

Model 
3 

Model 
4 

Intercept 0.85*** 0.84*** 0.85*** 1.00***
 0.04 0.04 0.04 0.07 
Mod (proj)  -0.46*  -0.73**
  0.26  0.22 
Mod (rel)   -0.33 -0.38**

   
0.27 0.18 

Software    -0.23**
    0.08 
Random effects    
Within 
project 

0.04*** 0.04*** 0.01*** 0.02**
0.01 0.01 0.00 0.01 

Initial 
status 

0.07*** 0.06*** 0.08*** 0.06***
0.02 0.02 0.02 0.02 

Rate of 
change 

  0.69** 0.46**
  0.38 0.21 

Model fit     
-2 LL 26.9 23.9 -113.3 -159.1 
AIC 32.9 31.9 -103.3 -143.1 
BIC 38.3 39.2 -94.1 -128.5 
Intraclass 
Correlation 0.60 0.59 0.86 0.73 

  * p < 0.10, ** p < 0.05, *** p < 0.0001 
 

5.3. Number of static bugs 
 
First, the number of static bugs (log) varies across 

projects (0.68, s.e. 0.16, n=180) (see Model 1, Table 
4). Eighty-three percent of variation in the number of 
static bugs can be explained by differences between 
projects. Second, average project modularity is 
significantly associated with more bugs (1.65, s.e. 
0.78) (Model 2). Average project modularity explains 
10% of the between project variation in number of 
static bugs. Third, similar to software complexity, there 
is no statistically significant difference in the 
relationship between modularity and number of static 
bugs within projects (1.08, s.e. 0.90) (Model 3). 
However, the relationship between modularity and 
number of static bugs varies across projects (variance 
component is 12.31, s.e. 6.58), explaining 44% of the 
within-project variation in number of static bugs. The 
best fitting model using repeated measures (Model 4) 
includes significant effects for project-level 
modularity, release-level modularity, project age, and 
OSS license. As degree of modularity increases, the 
number of static bugs both across projects (2.10, s.e. 
0.80) and within projects (1.22, s.e. 0.60) increases. In 
addition, older projects exhibit more static bugs (0.11, 
s.e. 0.02), and projects that use a business-friendly 
OSS license exhibit fewer static bugs (-0.41, s.e. 0.25). 
Projects exhibit marginally different relationships 
between degree of modularity and static bugs (5.76, 
s.e. 3.97).  
Table 4. HLM results for number of static bugs 

Fixed 
effects 

Model 
1 

Model 
2 

Model 
3 

Model 
4 

Intercept 6.19*** 6.19*** 6.19*** 6.43***

 0.15 0.12 0.13 0.18 
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Mod (proj)  1.65***  2.10**
  0.78  0.80 
Mod (rel)   1.08 1.22* 
   0.90 0.60 
Project age    0.11***
    0.02 
Dev cycle    -0.03 
    0.02 
License    -0.41* 

   0.25 
Random effects    
Within 
project 

0.14*** 0.12*** 0.08*** 0.72***
0.02 0.02 0.01 0.15 

Initial 
status  

0.68*** 0.62*** 0.70***  
0.16 0.15 0.16  

Rate of 
change 

  12.31** 5.76* 
  6.58 3.97 

Model fit     
-2 LL 282.9 277.3 234.1 108.1 
AIC 286.9 281.3 240.1 114.1 
BIC 290.5 285.0 245.6 119.6 
Intraclass 
Correlation 0.83 0.84 0.90  

  * p < 0.10, ** p < 0.05, *** p < 0.0001 
 
5.4. Number of bug reports 

 
We do not find any evidence that projects differ in 

the number of bugs reported (-0.05, s.e. 0.12, n=146).13 
Therefore, none of the variables, including modularity 
significantly predict number of bug reports since there 
are no differences to be predicted. 

 
5.5. Percentage of bugs closed 

 
The model predicting percentage of bug reports 

closed using the full model (see Section 5.1) was 
statistically significant and the best-fitting model.14 
The predictors release-level modularity, development 
cycle age, and interactions of release-level modularity 
with project-level modularity, license, audience, and 
software topic were each statistically significant. For 
these data, increasing release-level modularity 
decreases the percentage of bugs closed (-2.18, s.e. 
0.73). Increasing development cycle time increases the 
percentage of bugs closed (0.11, s.e. 0.05). An increase 

                                                 
13 Due to the logarithmic distribution of number of bug reports (log), 
we used PROC GLIMMIX to test this model. This method tests for 
systematic variation in project means. 
14 Initial analyses suggested the between-project variation is 
consistent with within-project variation, so we used PROC 
GENMOD to analyze percentage of bugs closed. 

in one unit of the interaction terms with project-level 
modularity (18.79, s.e. 6.99) and audience (11.72, s.e. 
3.93) increases the percentage of bugs closed. 
However, an increase in one unit of the interaction 
terms with license (-9.34, s.e. 2.44) and software topic 
(-9.05, s.e. 3.62) decreases percentage of bugs closed.  

 
5.6. Time to close bugs 

 
Projects vary significantly in the median time to 

close bugs (log) across projects (1.55, s.e. 0.47) (see 
Model 1) (Table 5). Forty-four percent of total 
variation in time to close bugs occurs between projects. 
However, degree of modularity does not explain any of 
this variation either within projects or across projects. 
Project modularity (Model 2) does not significantly 
affect time to close bugs (-0.23, s.e. 1.81) (Model 2). In 
addition, there is no statistically significant difference 
in the relationship between modularity and time to 
close bugs across projects (0.01, s.e. 1.37) (Model 3). 
Between-project modularity and within-project 
modularity also did not significantly predict time to 
close bugs in the final model (Model 4).  

Table 5. HLM results for time to close bugs 
Fixed 
effects 

Model 
1 

Model 
2 

Model 
3 

Model 
4 

Intercept 2.72*** 2.72*** 2.72*** 3.28***
 0.22 0.22 0.22 0.38 
Mod (proj)  0.01  -0.28 
  1.37  1.34 
Mod (rel)   -0.23 0.18 
   1.81 2.00 
Project age    -0.19* 
    0.11 
Dev cycle    0.27** 
    0.11 
Topic    -0.83* 

   0.46 
Random effects    
Within 
project 

1.98*** 1.97*** 1.83*** 1.75***
0.22 0.22 0.22 0.21 

Initial 
status  

1.55*** 1.61*** 1.60*** 1.61***
0.47 0.49 0.48 0.48 

Rate of 
change 

  25.19 34.56 
  26.51 29.53 

Model fit     
-2 LL 775.8 773.3 770.7 764.6 
AIC 779.8 777.3 776.7 770.6 
BIC 783.5 781.0 782.2 776.1 
Intraclass 
Correlation 0.44 0.45 0.47 0.48 

  * p < 0.10, ** p < 0.05, *** p < 0.0001 
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6. Discussion 
 

Contrary to popular belief and theories of 
modularity, empirically we find a more complex 
relationship between degree of modularity and 
software quality. Degree of modularity affects different 
types of software quality differently. First, we find the 
expected negative relationship between degree of 
modularity and software complexity when examining 
across project differences in average complexity. 
However, individual projects do not consistently 
exhibit the same type of relationship between 
modularity and complexity. As modularity increases, 
software complexity in some projects decreases 
substantially, yet increases substantially in others. This 
suggests that projects do not deal with modularity 
similarly, so exploration of additional project or release 
characteristics would help further explain this finding.  

Second, we find a positive relationship between 
degree of modularity and the number of static bugs. 
Existing theory suggests that increasing modularity 
should reduce the number of bugs, yet this objective 
metric suggests otherwise. We do find significant 
differences in the relationship between modularity an 
static bugs across projects, similar to software 
complexity, suggesting that additional project or 
release characteristics may moderate these 
relationships. Because the majority of variation in 
number of bugs occurs between projects, we also need 
to explore other project attributes that may moderate 
this relationship to help explain why higher mean 
modularity is associated with an increase in number of 
static bugs.  

Third, percentage of bugs closed exhibits a very 
complex relationship with software modularity. As 
release-level modularity increases, the percentage of 
bugs closed unexpectedly decreases. However, projects 
with higher mean modularity and increasing 
modularity within the projects close a higher 
percentage of bug reports. In addition, projects with 
software that targets software developers and 
increasing modularity over releases also close a higher 
percentage of bug reports. However, projects that use a 
business-friendly license or create applications for 
software development and exhibit increasing 
modularity across releases close a lower percentage of 
bugs. Finally, we do not find any empirical support for 
a relationship between software modularity and 
number of bug reports, or time to close bugs.  
 
7. Limitations 
 

While we introduce new measures of modularity 
and software quality and test our hypothesis using 
longitudinal data from a fairly large sample of OSS 
projects, our study is not without limitations. While we 
are able to control for differences in software quality 
due to differences in tools used by sampling projects 
hosted only on SourceForge, we do not consider 
projects hosted on other sites. In addition, we examine 
projects written only in the Java programming 
language. While we do not anticipate reasons our 
results may not be generalizable to other object-
oriented programming languages, this should be 
explore empirically. Other types of structure and 
project characteristics may also help to explain the 
unexpected negative relationship between degree of 
modularity and software defects, such as project 
governance mechanisms and the skill level of code 
contributors. We hope to further explore these 
variables in future research using our data. Finally, 
while we used several measures to assess software 
quality, we lack corroborating evidence from code 
contributors to support our results. In future research, 
we hope to address these concerns by collecting survey 
and interview data from code contributors and other 
project members to address perceptions about software 
quality as well as their experience writing software for 
the project. 
 
8. Conclusion and Implications 
 

We empirically examine the relationship between 
software modularity and software quality in this paper. 
By introducing a new measure of modularity, we 
assess the relationships among software components as 
packages, not classes or files, which is a more 
pragmatic assessment of software modularity. We also 
assess software quality in OSS projects using two new 
measures: software complexity and number of static 
bugs. In addition, we apply the previously used bug 
report measures to assess software quality, yet we 
adjust these measures to account for the size of the user 
base. 

Our empirical findings both complement and 
challenge existing theories of modularity. While 
existing theory suggests that degree of modularity 
should improve software quality, the data suggests this 
relationship is quite complex. As expected, we find a 
decrease in software complexity as degree of 
modularity increases. However, we see an increase in 
number of software defects as modularity increases. In 
both cases, modularity does not exhibit consistent 
relationships with these quality measures across 
projects. Data also suggest a complex relationship 
between modularity and percentage of bugs closed, 
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with several control variables moderating this 
relationship. 

The empirical findings regarding the relationship 
between modularity and product quality have 
implications for the practice of software development. 
These findings may prove useful to software 
development project managers who need practical and 
quantifiable techniques for monitoring the software 
development process and subsequent software quality. 
The measures of modularity and software quality 
empirically examined and tested may also help 
software development managers evaluate existing 
software and software under development.  
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