
Easier Said than Done: An Empirical Investigation of Software Design and
Quality in Open Source Software Development

Caryn A. Conley

cconley8@fau.edu

Lee Sproull
lsproull@stern.nyu.edu

Abstract
We empirically examine the relationship between

software design modularity and software quality in
open source software (OSS) development projects.
Conventional wisdom suggests that degree of software
modularity affects software quality. An analysis of 203
software releases in 46 OSS projects hosted on
SourceForge.net lends support for a more complex
relationship between software modularity and software
quality than conventional wisdom suggests. We find
that software modularity is associated with reduced
software complexity, an increased number of static
software bugs, and a mixed relationship with the
percentage of bugs closed. We do not find empirical
evidence supporting any relationship between
modularity and other measures of customer
satisfaction. In addition to empirically testing the
relationship between modularity and quality, we
introduce new measures of software modularity and
software quality. Implications are developed for the
theory of modularity and the practice of software
development.

1. Introduction

For years, researchers and practitioners alike have
espoused the importance and significance of the
relationship between software design and software
quality (e.g., [28] [18] [19] [29]). Theoretically,
altering the design of a product should directly affect
work processes and software quality by influencing the
information processing requirements of the software
developer and coordination requirements among
programmers [9] [13]. One important concept used to
characterize software architecture, degree of
modularity, has been theorized to be particularly
important. In the domain of conventional software
development, increasing modularity is theorized to
increase software quality and reduce programmatic
effort [19] [24]. However, we lack systematic
empirical evidence to support these claims [12] [14].
Previous empirical work primarily consists of case
studies, providing anecdotal evidence at best as
theoretical support. One reason for the lack of

empirical tests of this conventional wisdom stems from
the difficulty associated with measuring degree of
modularity, because accurately assessing the patterns
of interdependencies that exist within the software
architecture proves challenging.

Community-based Open Source Software (OSS)
development is a unique context in which to examine
the relationship between software design and software
quality. OSS volunteers around the world use the
Internet to contribute software, which is then freely
available for others to use and alter. Prominent and
successful examples of OSS projects include Apache,
Linux, and Mozilla Firefox [27] [26].

We study the effects of software design on software
quality in the context of community-based OSS
development for several reasons. First, community-
based OSS development is relatively free of formal
organizational influences, so the independent effects of
software architecture should be easier to detect and
model. Second, as previously mentioned, OSS is a
well-established and important phenomenon itself,
with many successful projects. Third, the population of
OSS projects is sufficiently large and varied that it is
possible to compare differences in software quality.
Finally, because OSS development is conducted via the
Internet, characteristics of the software and software
quality can be observed and measured relatively easily
and over time. We empirically examine how the design
characteristics of the software itself influence software
quality in community-based OSS projects over time.
We also introduce new measures of modularity and
software quality to empirically examine this
relationship.

2. Theoretical Perspective

Software modularity is an important concept used
to characterize software design, and describes the
degree to which components within a product are
independent of one another. This degree of component
independence should then directly affect task
coordination and independence in software

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

1978-0-7695-3450-3/09 $25.00 © 2009 IEEE

development, and subsequently affect development
outcomes, such as software quality.1 We therefore
study this characteristic of software design, degree of
modularity, and empirically examine the research
question: How does degree of software modularity
affect software quality in community-based OSS
projects?

Modularity describes the degree to which
components within software are independent or loosely
coupled from one another, yet function as an integrated
whole using interfaces [2] [18]. Interfaces describe in
detail how the [components] will interact, including
how they will fit together, connect, and communicate
(p. 86, [1]). Modularity is related to the architecture of
the software, defined as the scheme by which the
function of the [software] is allocated to [software]
components (p. 240, [25]). Components refer to a
subassembly or distinct region of the product (p.

421, [25]). Relationships among individual
components are described by coupling, such that two
components are coupled if a change made to one
component requires a change to the other component in
order for the overall [software] to work correctly (p.
422, [25]). Software with a low degree of modularity is
considered highly integrated, because the functionality
is tightly coupled and interdependent, regardless of the
number of components.

Theoretically, software modularity should affect
software development and software quality.
Modularity facilitates task decomposition, which is a
strategy for efficiently organizing the work necessary
to create the software [21]. More specifically, as
software becomes more modular, the process of
dividing a larger task into smaller subtasks becomes
easier, and tasks become easier to identify. In the
context of conventional software development, prior
work has claimed that software modularity improves
software quality and reduces programmatic effort in
both the development and maintenance of centrally-
developed and hierarchically-managed software [19]
[24]. It therefore seems natural to expect the degree of
software modularity to also affect software quality in
OSS projects.

From the literature, then, degree of software
modularity should be positively related to software
quality. Following from the definition of modularity,
all other things being equal, more modular software
products have more components that are more loosely
coupled. The probability that a change to one
component will inadvertently affect another
component, thus introducing an error, should decrease

1 While this paper focuses on the role of modularity in software
development, these ideas are also the conventional wisdom in the
development of tangible products.

in more modular software. As the number of
components increases in more modular software,
functionality becomes more specialized and isolated
within each of the components, and each component
contains less functionality on average [2] [19] [20]
[25]. In addition, smaller and more loosely coupled
components foster more rapid problem resolution
because problem identification is more likely localized
to specific modules [19]. As the ease of problem
identification and resolution increases with increasing
modularity, a larger number of existing problems
should be identified and resolved within the software
application, thus increasing software quality in more
modular software.

3. Measurement

3.1. Overview

Researchers have noted the difficulty in measuring
degree of modularity [12] [14]. We therefore provide a
detailed explanation of the measure introduced and
compare it to other measures that have been proposed
to evaluate degree of software modularity. In addition,
because software quality has multiple dimensions, we
discuss the measures used to assess two dimensions of
software quality in this paper: intrinsic quality and
customer satisfaction.

3.2. Software modularity

OSS provides a unique opportunity to more
accurately describe software components and their
relationships in a single application. Specifically, it is
possible to assess the degree of independence, and thus
modularity, among software classes by examining
function calls among classes in the source code.
Several researchers have used this information to
measure software modularity at the class or file level
[12] [13] [14]. While these measures provide detailed
information regarding software functionality, they do
not capture whether classes or files communicate via
interfaces, a critical concept used to achieve
component independence in modular software.
Without addressing the types of relationships among
classes or files, their measure cannot correctly assess
the degree of software modularity. In addition,
individual classes or files do not function as modules
or components. In practice, programmers use groups of
files or classes, called packages in Java, to implement
software functionality [4] [8]. Classes within these
packages should be interdependent, and classes
contained in different packages should be independent.
Programmers implement independence among

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

2

packages using interfaces. Therefore, we argue that
measuring the degree of software modularity using
packages as the module or component, not classes or
files, and capturing the extent to which interfaces are
used to achieve independence is a more appropriate
assessment of software modularity.

Many people have written applications to extract
information about class relationships, and [15]
proposed a method for mathematically evaluating this
information at the package level as a measure of
software design. The measure assesses the degree to
which Java programming constructs (e.g. interfaces
and concrete classes) are used to achieve independence
among packages. Practitioners support and recommend
the use of [15] s measure and the information used to
make the calculation to evaluate software design. In
fact, several programs have been written to
automatically extract relevant metrics from the source
code (e.g. JDepend, NDepend, Metrics, VizzAnalyzer)
(e.g. [6] [7] [11]).

We use [15] s calculation as our measure of degree
of modularity. To do this, we derive various metrics
from the source code for each package contained in the
application, which are then included in a series of
calculations.2 We extract these metrics from each
release using a static source code analysis tool, the
Metrics Eclipse plug-in.3 These include the total
number of lines of code (LOC), number of concrete
classes, number of abstract classes, afferent coupling,
and efferent coupling.4 Afferent coupling (AC) is a
measure of a package s responsibility, and counts the
number of other packages within the application that
call (depend on) classes within the given package.
Efferent coupling (EC) is a measure of a package s
independence, and counts the number of other
packages within the project that classes within the
given package call (depend on). Higher values of AC
indicate higher responsibility and higher values of EC
indicate lower independence.

Using these metrics, we then calculate each
package s abstractness (A), which is the ratio of the
number of abstract classes to total classes within a
package. A value of zero indicates a package is
comprised of only concrete classes, and a value of 1

2 We only analyze source code that is included in the core of the
application. We therefore exclude obvious plug-ins designed to port
the code to other platforms and applications. Code of this nature is
generally included in downloadable files and therefore easily
identifiable. We also exclude source code used to unit test the
application. Generally this code is included in a separate package or
separate folder, and common naming conventions (e.g. Test)
facilitate identification.
3 http://metrics.sourceforge.net/
4 Concrete classes contain the actual programming logic or
functionality, while abstract classes act as the interfaces between
concrete classes.

indicates a package is comprised of only abstract
classes. Next we calculate Instability (I), which is the
ratio of a package s independence to total
independence and responsibility [EC / (EC + AC)]. A
value of zero indicates complete stability (changes may
be made to other packages without affecting this
package) and a value of one indicates complete
instability (changes made to other packages will likely
directly affect this package). The last step in
calculating this measure is to calculate the distance
from the main sequence (D), which measures the
balance between abstractness and instability in a
package. It is the perpendicular distance of a package
from the idealized line A + I = 1. A value of zero
indicates ideal balance (good design), and one
indicates complete imbalance (poor design).

In this paper, Drelease is used as a proxy for source
code modularity because it evaluates the type of
relationships among software packages. Because the
sizes of packages within an application vary, the
implications of each individual package s design may
not be equal. Therefore, we weight each package s D
by the log of the LOC within the package to account
for these differences. To calculate Drelease for each
software application, we sum each package s weighted
D and then divide by the sum of the log of the LOC of
all packages for every package i in the release. Finally,
we subtract this from one to get Drelease, so that larger
values indicate higher degrees of modularity:

Drelease = 1 Di * log(LOCi)
 log(LOCi)

To the best of our knowledge, no previous research on
OSS development has used this measure.

3.3. Software quality

Software quality consists of several dimensions,
such as intrinsic quality and customer satisfaction [10].
Intrinsic quality refers to the inherent quality of the
software itself (e.g. does the program work properly
when running, or does it break or crash
unexpectedly?). Customer satisfaction refers to user
perceptions of quality (e.g. does the program contain
desired features? Does the program work when I use
it?). We use two measures to assess intrinsic software
quality and three measures to assess customer
satisfaction.

First, we introduce two measures of intrinsic
software quality not previously reported in the OSS
literature: number of static bugs and software
complexity.5 Bugs in software refer to problems or

5 Both measures are frequently used in software engineering (e.g., [5]
[10] [22]). Number of bugs or functional defects is a common
operationalization of intrinsic quality [10]. Other traditional

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

3

errors with the program that prevent it from running
properly. Examples include logical flaws, inappropriate
use of programming constructs, or memory leaks. Any
of these problems reduce software quality. Software
complexity is an additional software design
characteristic that affects the difficulty associated with
problem identification and resolution, testability, and
maintenance provisioning over time. Higher software
complexity reflects lower software quality. Both
measures are derived from objective evaluations of the
source code included in each software release.

We first assess the number of bugs or defects in the
source code using two static source code analysis tools,
FindBugs and PMD.6 Both tools provide a list of the
problems found, and the location of each problem in
the source code. The results of these static source code
analysis tools are combined because each uses a
different algorithm to identify different types of
problems or defects within the source code. This
measure should be interpreted in a relative sense, as
each tool exhibits some degree of false positive and
false negative reporting. Number of static bugs is
therefore a count of the total number of static source
code bugs found by both programs for a given software
release. This total is then divided by the log of the total
LOC in the release to control for software size.

In addition to the number of bugs or defects in a
software program, software complexity also reflects
the intrinsic quality of the software written. Software
complexity describes the complexity of the control
flow logic within an application by examining the
number of linearly independent paths within the source
code. A greater number of logic paths indicate greater
complexity. We use McCabe s Cyclomatic Complexity
measure, a standard metric used in software
engineering, to measure software complexity in this
paper [16]. We calculate the average software
complexity of each release using information from the
Metrics Eclipse plug-in. Both intrinsic measures of
quality assess the total release code quality.

Second, we use three measures to assess software
quality associated with customer satisfaction as
previously identified in OSS research as a proxy for
software quality and OSS project success [3].7 Many
OSS projects use a specific communication tool, a bug
tracker, to encourage users to voluntarily report errors

measures of intrinsic quality address conformance to stated
requirements [10]. Because most OSS products do not implement
specific requirements, we do not use this as a measure of software
quality.
6 http://findbugs.sourceforge.net/ and http://pmd.sourceforge.net/
7 Reports of problems by customers and customer satisfaction with
the software are two common operationalizations of customer
satisfaction [10]. We do not report direct measures of customer
satisfaction in this paper.

found in the software. 8 Once a bug has been addressed
or solved by project developers, the bug report will be
“closed.” We calculate three measures of software
quality using this bug report information. First, we
calculate the number of bugs reported as the number of
bug reports created for a given software release. A
greater number of problems reported by users should
reflect lower customer satisfaction and thus lower
software quality. We assess two additional measures of
customer satisfaction: percentage of bugs closed and
time to close bugs.9 Increasing the percentage of bugs
closed and decreasing the time to close bugs should
reflect higher customer satisfaction, indicating that
when problems are reported they are fixed and closed
in a timely fashion. However, the number of bugs
reported is a function of the number of people using
the software, and may not reflect the inherent quality
of the software. Therefore, because projects with
smaller communities may experience fewer bug reports
because of the smaller user base, fewer bug reports
may not necessarily indicate better software quality.
We therefore weighted all three bug report measures
by the number of downloads for each release to
account for differences in community size and number
of people reporting bugs, which has not been done
previously to our knowledge.10

4. Method

4.1. Overview

To examine how software modularity affects
software quality in community-based OSS projects, we
require detailed longitudinal information about
software design and objective measures of software
quality. OSS projects hosted on SourceForge.net meet
these requirements. People can freely register any OSS
project on SourceForge, and subsequently use the suite

8 Many OSS researchers have used community problem reports or
bug reports as a proxy for software quality. However, not all project
communities use specific bug tracking tools some may use email
lists or discussion boards to manage reported bugs making it difficult
for researchers to filter identified bugs from other communication.
Bug reports are also a proxy for run-time errors, as the problems
identified with the software often result from errors when using the
software.
9 We calculate the average time to close bugs only for bug reports
that have been closed . This is therefore a conservative measure of
time to fix bugs, as some bugs may remain outstanding with very
long working periods.
10 Because we do not have data on the number of downloads per time
period for each project, we estimate the number of downloads for
each release using an exponential function and the duration of each
release. As the project ages and improves, more people are likely to
download the software as the software matures and more people
learn about the software, so adoption likely follows an exponential
function.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

4

of tools available to all registered projects, including a
source code repository, project website, developer
website, tracker tools, mailing lists, and discussion
boards. Common availability and use of these tools
across projects reduces tool differences as a source of
observed differences in software quality. In addition,
SourceForge is one of the most popular platforms for
hosting OSS projects, thus yielding a large population
of projects from which to draw our sample. Most
importantly, SourceForge provides a public record of
the history of each project: all records of
communication, release history and associated files,
source code repositories, artifact tracking, etc., are
publicly available and accessible, providing us with
our required data of a cross-section of OSS project data
over time.

4.2. Sample

While SourceForge hosts over 160,000 thousand

registered projects, not all projects exhibit
characteristics that correspond to the types of projects
of interest. For example, a large fraction of registered
projects are estimated or known to be a vanity project
or a project in name only, i.e., they have no developers
other than the person who registered the project and
exhibit no development or communication activity. Of
the remaining real projects, some are clearly
controlled by a commercial organization and its
employees, rather than by volunteers, and thus have a
commercial incentive and authority to exercise control
over the project. In addition, because we examine how
software modularity affects software quality, it is
important for each project to have created a working
program, even if it is very preliminary, to ensure the
existence of an initial code base from which project
members could work. Generally speaking, OSS
projects in later stages of development have distributed
at least one version, or release, of the software. It is
also important that the project exhibits some minimum
degree of development or communication activity
among project members to ensure a sufficiently large
pool of potential code contributors. The most common
programming language used by the projects registered
on SourceForge.net are object-oriented programming
languages, including Java and C++. In addition,
object-oriented language skills are the most common
skills reported by SourceForge.net users. We therefore
used the following sampling frame to identify an
appropriate group of projects from which to sample:
projects that do not exhibit obvious corporate or
organizational sponsorship or involvement, projects
with at least one software release in a relatively mature
development stage (Beta or Production/Stable),
projects exhibiting a minimum level of project activity,

and products written only using Java.11 The frame
includes approximately 180 projects from which a
random sample of 46 was drawn. For each project, we
sample each major software release (e.g. 1.x, 2.x) as
our unit of analysis for a total of 203 releases. Refer to
Table 1 for characteristics of the projects sampled.
Table 1. Summary project characteristics
 Average Std Dev Min Max
Date
registered 10/30/02 433 days 12/16/99 7/22/04

Download 103,973 299,085 1,492 1,985,014
Project
activity 3,912 8,370 80 37,297

Target
audience 80% 41%

Software
topic 63% 49%

License 57% 50%
Total
releases 22.8 23.1 4 147

Releases
analyzed 6.94 4.13 2 20

4.3. Measures

4.3.1. Modularity. We calculate the degree of
modularity for each major software release sampled
using the source code contained in each release. This
measure is based on [15] s measure of software design
quality. Refer to Section 3.2 for details of the
calculation.

4.3.2. Software quality. We use measures of intrinsic
quality and customer satisfaction to assess software
quality. To measure intrinsic software quality, we
calculate the number of static bugs and software
complexity based on objective evaluations of the source
code included in the software release using two static
source code analysis tools.

To assess customer satisfaction, we use three
measures of software quality previously identified in
OSS research as a proxy for software quality and OSS
project success [3]: number of bugs reported,
percentage of bugs closed, and time to close bugs.
Refer to Section 3.3 for details of all software quality
measures.

11 Project activity refers to any communication behavior made by
OSS project members (e.g. posts to discussion forums, bug trackers,
email lists, etc.). Projects with at least 75 total posts to any of the
project communication tools (discussion forums, trackers, and email
lists) as well as evidence of use of the source code repository were
included in the sampling frame.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

5

4.3.3. Control variables. The age of the project and
the time between releases likely affects the size of the
development team and the quantity of effort that can be
contributed for each release. Because each release
occurs at a different point in time, two variables are
thus used to capture the effect of time. First, project
age captures the number of weeks between the date
that the project was registered on SourceForge and the
date that the specified software was released. Second,
development cycle time is captured by weeks since the
previous release. This value is always zero for the first
release of a given project. In addition, the flexibility of
the OSS license associated with the software has been
found to affect user interest in the project and software
development effort [17] [23]. Also, characteristics of
the type of software being developed and the project
community may also influence design and quality
metrics, based on the software requirements and the
average programming skill level of the project
community. We therefore use dummy codes to
represent whether a business-friendly OSS license is
used as well as whether the intended audience of the
software is for computer programmers (e.g.

Developers, System Administrators). We also use a
dummy code, software topic, to represent whether the
type of application being developed is for software
development or other primarily technical applications
(e.g. databases, Internet). Refer to Table 2 for summary
means and correlations of all measures.

5. Results

5.1. Overview

Because our dependent variables were significantly

skewed, we performed log transformations on all
dependent variables for the analyses. Refer to Table 2
for summary means and correlations for degree of
modularity, all dependent variables, and control
variables. Since our data is a cross-section of OSS
projects over time, we use hierarchical linear modeling
(HLM) to test the relationships between degree of
modularity and the various measures of software
quality.

Table 2. Means and correlations for releases analyzed
Measures Mean n S.D. 1 2 3 4 5 6 7 8 9 10
1. Modularity 0.58 203 0.20

2. Complexity 0.82 180 0.32 -0.35
3. Number static bugs 6.18 180 0.91 0.44 0.11
4. Number bugs reported 1.07 146 0.98 0.08 0.09 0.24
5. Percent bugs closed 11% 198 17% -0.17 -0.03 -0.19 0.36
6. Time to close bugs 2.66 199 1.81 -0.02 0.29 0.20 0.27 -0.03
7. Project age 3.65 203 1.67 0.10 -0.03 0.25 0.01 -0.49 0.12
8. Development cycle 2.22 203 1.51 0.24 -0.02 0.25 0.21 -0.23 0.22 0.63
9. Intended audience 0.80 203 0.40 0.36 -0.27 -0.07 -0.07 -0.01 -0.17 0.05 0.12

10. OSS license 0.57 203 0.49 0.31 -0.23 -0.07 0.18 0.05 0.03 0.11 0.17 0.46

11. Application type 0.76 203 0.42 -0.06 -0.15 -0.30 -0.03 -0.02 -0.09 0.09 0.08 0.24 0.30

We present the results of four models for each
quality measure to assess the relationship between
degree of modularity and software quality: Model 1:
unconditional means (do projects differ in software
quality?), Model 2: regression with means-as-outcomes
(does modularity explain differences in quality across
projects?), Model 3: random coefficient (does
modularity explain differences in quality within
projects?), and Model 4: the best fitting model (what
role does modularity play after accounting for other

variables?).12 Including modularity and all control
variables, the full model is represented as follows:
Level-1 model (release effects):

Yij = β0j + β1j(Modij) + β2j(Ageij) + β3j(Devij) + rij
Level-2 model (project effects):

β0j = γ00 +γ01(Modj) +γ02(Licj) +γ03(Audj)
+γ04(Topj) + µ0j

β1j = γ10 +γ11(Modj) +γ12(Licj) +γ13(Audj)
+γ14(Topj) + µ1j

12 We examined several models using different combinations of
modularity, control variables, random error covariance structures,
etc., to identify the most appropriate and best-fitting model. We only
present the results of the best-fitting model here.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

6

β2j = γ20 + µ2j
β3j = γ30 + µ3j

where Yij represents software quality (e.g. software
complexty) for release i in project j, Modij is release
modularity centered around the project mean, Modj is
project modularity centered around the grand mean,
Ageij is the project age for release i in project j, Devij is
the development cycle time for release i in project j,
Licj is the license for project j, Audj is the intended
audience for project j, and Topj is the software topic
for project j. We used SAS 9.1 (PROC MIXED,
GLIMMIX, and GENMOD) to test these models.

5.2. Software complexity

First, we find evidence of significant variation in

average software complexity (log) across projects
(0.07, s.e. 0.02, n=180) (see Model 1, Table 3). Sixty
percent of the variation in complexity can be explained
by the differences between projects. Second, average
project modularity is marginally associated with lower
software complexity (-0.46, s.e. 0.26), and explains 8%
of project-to-project variation in mean software
complexity (Model 2). Third, there is no statistically
significant difference in the relationship between
modularity and software complexity within projects (-
0.33, s.e. 0.27). However, the slopes representing the
relationship between modularity and software
complexity vary significantly across projects (variance
component is 0.69, s.e. 0.38), explaining 70% of the
within-project variation in software complexity. The
best fitting model using repeated measures (Model 4)
includes significant effects for project-level
modularity, release-level modularity, and software
topic. As degree of modularity increases, level of
complexity both across projects (-0.73, s.e. 0.22) and
within projects (-0.38, s.e. 0.18) decreases. In addition,
projects creating applications associated with software
development exhibit software with lower complexity (-
0.23, s.e. 0.08). Projects significantly differ in average
software complexity (0.06, s.e. 0.02), and projects
exhibit significantly different relationships between
degree of modularity and software complexity (0.46,
s.e. 0.21).
Table 3. HLM results for software complexity
Fixed
effects

Model
1

Model
2

Model
3

Model
4

Intercept 0.85*** 0.84*** 0.85*** 1.00***
 0.04 0.04 0.04 0.07
Mod (proj) -0.46* -0.73**
 0.26 0.22
Mod (rel) -0.33 -0.38**

0.27 0.18

Software -0.23**
 0.08
Random effects
Within
project

0.04*** 0.04*** 0.01*** 0.02**
0.01 0.01 0.00 0.01

Initial
status

0.07*** 0.06*** 0.08*** 0.06***
0.02 0.02 0.02 0.02

Rate of
change

 0.69** 0.46**
 0.38 0.21

Model fit
-2 LL 26.9 23.9 -113.3 -159.1
AIC 32.9 31.9 -103.3 -143.1
BIC 38.3 39.2 -94.1 -128.5
Intraclass
Correlation 0.60 0.59 0.86 0.73

 * p < 0.10, ** p < 0.05, *** p < 0.0001

5.3. Number of static bugs

First, the number of static bugs (log) varies across

projects (0.68, s.e. 0.16, n=180) (see Model 1, Table
4). Eighty-three percent of variation in the number of
static bugs can be explained by differences between
projects. Second, average project modularity is
significantly associated with more bugs (1.65, s.e.
0.78) (Model 2). Average project modularity explains
10% of the between project variation in number of
static bugs. Third, similar to software complexity, there
is no statistically significant difference in the
relationship between modularity and number of static
bugs within projects (1.08, s.e. 0.90) (Model 3).
However, the relationship between modularity and
number of static bugs varies across projects (variance
component is 12.31, s.e. 6.58), explaining 44% of the
within-project variation in number of static bugs. The
best fitting model using repeated measures (Model 4)
includes significant effects for project-level
modularity, release-level modularity, project age, and
OSS license. As degree of modularity increases, the
number of static bugs both across projects (2.10, s.e.
0.80) and within projects (1.22, s.e. 0.60) increases. In
addition, older projects exhibit more static bugs (0.11,
s.e. 0.02), and projects that use a business-friendly
OSS license exhibit fewer static bugs (-0.41, s.e. 0.25).
Projects exhibit marginally different relationships
between degree of modularity and static bugs (5.76,
s.e. 3.97).
Table 4. HLM results for number of static bugs

Fixed
effects

Model
1

Model
2

Model
3

Model
4

Intercept 6.19*** 6.19*** 6.19*** 6.43***

 0.15 0.12 0.13 0.18

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

7

Mod (proj) 1.65*** 2.10**
 0.78 0.80
Mod (rel) 1.08 1.22*
 0.90 0.60
Project age 0.11***
 0.02
Dev cycle -0.03
 0.02
License -0.41*

 0.25
Random effects
Within
project

0.14*** 0.12*** 0.08*** 0.72***
0.02 0.02 0.01 0.15

Initial
status

0.68*** 0.62*** 0.70***
0.16 0.15 0.16

Rate of
change

 12.31** 5.76*
 6.58 3.97

Model fit
-2 LL 282.9 277.3 234.1 108.1
AIC 286.9 281.3 240.1 114.1
BIC 290.5 285.0 245.6 119.6
Intraclass
Correlation 0.83 0.84 0.90

 * p < 0.10, ** p < 0.05, *** p < 0.0001

5.4. Number of bug reports

We do not find any evidence that projects differ in

the number of bugs reported (-0.05, s.e. 0.12, n=146).13
Therefore, none of the variables, including modularity
significantly predict number of bug reports since there
are no differences to be predicted.

5.5. Percentage of bugs closed

The model predicting percentage of bug reports

closed using the full model (see Section 5.1) was
statistically significant and the best-fitting model.14
The predictors release-level modularity, development
cycle age, and interactions of release-level modularity
with project-level modularity, license, audience, and
software topic were each statistically significant. For
these data, increasing release-level modularity
decreases the percentage of bugs closed (-2.18, s.e.
0.73). Increasing development cycle time increases the
percentage of bugs closed (0.11, s.e. 0.05). An increase

13 Due to the logarithmic distribution of number of bug reports (log),
we used PROC GLIMMIX to test this model. This method tests for
systematic variation in project means.
14 Initial analyses suggested the between-project variation is
consistent with within-project variation, so we used PROC
GENMOD to analyze percentage of bugs closed.

in one unit of the interaction terms with project-level
modularity (18.79, s.e. 6.99) and audience (11.72, s.e.
3.93) increases the percentage of bugs closed.
However, an increase in one unit of the interaction
terms with license (-9.34, s.e. 2.44) and software topic
(-9.05, s.e. 3.62) decreases percentage of bugs closed.

5.6. Time to close bugs

Projects vary significantly in the median time to

close bugs (log) across projects (1.55, s.e. 0.47) (see
Model 1) (Table 5). Forty-four percent of total
variation in time to close bugs occurs between projects.
However, degree of modularity does not explain any of
this variation either within projects or across projects.
Project modularity (Model 2) does not significantly
affect time to close bugs (-0.23, s.e. 1.81) (Model 2). In
addition, there is no statistically significant difference
in the relationship between modularity and time to
close bugs across projects (0.01, s.e. 1.37) (Model 3).
Between-project modularity and within-project
modularity also did not significantly predict time to
close bugs in the final model (Model 4).

Table 5. HLM results for time to close bugs
Fixed
effects

Model
1

Model
2

Model
3

Model
4

Intercept 2.72*** 2.72*** 2.72*** 3.28***
 0.22 0.22 0.22 0.38
Mod (proj) 0.01 -0.28
 1.37 1.34
Mod (rel) -0.23 0.18
 1.81 2.00
Project age -0.19*
 0.11
Dev cycle 0.27**
 0.11
Topic -0.83*

 0.46
Random effects
Within
project

1.98*** 1.97*** 1.83*** 1.75***
0.22 0.22 0.22 0.21

Initial
status

1.55*** 1.61*** 1.60*** 1.61***
0.47 0.49 0.48 0.48

Rate of
change

 25.19 34.56
 26.51 29.53

Model fit
-2 LL 775.8 773.3 770.7 764.6
AIC 779.8 777.3 776.7 770.6
BIC 783.5 781.0 782.2 776.1
Intraclass
Correlation 0.44 0.45 0.47 0.48

 * p < 0.10, ** p < 0.05, *** p < 0.0001

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

8

6. Discussion

Contrary to popular belief and theories of
modularity, empirically we find a more complex
relationship between degree of modularity and
software quality. Degree of modularity affects different
types of software quality differently. First, we find the
expected negative relationship between degree of
modularity and software complexity when examining
across project differences in average complexity.
However, individual projects do not consistently
exhibit the same type of relationship between
modularity and complexity. As modularity increases,
software complexity in some projects decreases
substantially, yet increases substantially in others. This
suggests that projects do not deal with modularity
similarly, so exploration of additional project or release
characteristics would help further explain this finding.

Second, we find a positive relationship between
degree of modularity and the number of static bugs.
Existing theory suggests that increasing modularity
should reduce the number of bugs, yet this objective
metric suggests otherwise. We do find significant
differences in the relationship between modularity an
static bugs across projects, similar to software
complexity, suggesting that additional project or
release characteristics may moderate these
relationships. Because the majority of variation in
number of bugs occurs between projects, we also need
to explore other project attributes that may moderate
this relationship to help explain why higher mean
modularity is associated with an increase in number of
static bugs.

Third, percentage of bugs closed exhibits a very
complex relationship with software modularity. As
release-level modularity increases, the percentage of
bugs closed unexpectedly decreases. However, projects
with higher mean modularity and increasing
modularity within the projects close a higher
percentage of bug reports. In addition, projects with
software that targets software developers and
increasing modularity over releases also close a higher
percentage of bug reports. However, projects that use a
business-friendly license or create applications for
software development and exhibit increasing
modularity across releases close a lower percentage of
bugs. Finally, we do not find any empirical support for
a relationship between software modularity and
number of bug reports, or time to close bugs.

7. Limitations

While we introduce new measures of modularity
and software quality and test our hypothesis using
longitudinal data from a fairly large sample of OSS
projects, our study is not without limitations. While we
are able to control for differences in software quality
due to differences in tools used by sampling projects
hosted only on SourceForge, we do not consider
projects hosted on other sites. In addition, we examine
projects written only in the Java programming
language. While we do not anticipate reasons our
results may not be generalizable to other object-
oriented programming languages, this should be
explore empirically. Other types of structure and
project characteristics may also help to explain the
unexpected negative relationship between degree of
modularity and software defects, such as project
governance mechanisms and the skill level of code
contributors. We hope to further explore these
variables in future research using our data. Finally,
while we used several measures to assess software
quality, we lack corroborating evidence from code
contributors to support our results. In future research,
we hope to address these concerns by collecting survey
and interview data from code contributors and other
project members to address perceptions about software
quality as well as their experience writing software for
the project.

8. Conclusion and Implications

We empirically examine the relationship between
software modularity and software quality in this paper.
By introducing a new measure of modularity, we
assess the relationships among software components as
packages, not classes or files, which is a more
pragmatic assessment of software modularity. We also
assess software quality in OSS projects using two new
measures: software complexity and number of static
bugs. In addition, we apply the previously used bug
report measures to assess software quality, yet we
adjust these measures to account for the size of the user
base.

Our empirical findings both complement and
challenge existing theories of modularity. While
existing theory suggests that degree of modularity
should improve software quality, the data suggests this
relationship is quite complex. As expected, we find a
decrease in software complexity as degree of
modularity increases. However, we see an increase in
number of software defects as modularity increases. In
both cases, modularity does not exhibit consistent
relationships with these quality measures across
projects. Data also suggest a complex relationship
between modularity and percentage of bugs closed,

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

9

with several control variables moderating this
relationship.

The empirical findings regarding the relationship
between modularity and product quality have
implications for the practice of software development.
These findings may prove useful to software
development project managers who need practical and
quantifiable techniques for monitoring the software
development process and subsequent software quality.
The measures of modularity and software quality
empirically examined and tested may also help
software development managers evaluate existing
software and software under development.

References

[1] Baldwin, C. Y. and Clark, K. B. Managing in an age of

modularity. Harvard Business Review, 75, 84-93.
(1997).

[2] Baldwin, C. Y., & Clark, K. B. Design rules: The power
of modularity (Vol. 1). Cambridge: The MIT Press.
(2000).

[3] Crowston, K., Annabi, H., Howison, J., & Masango, C.
Towards a portfolio of FLOSS project success
measures. Paper presented at the Collaboration, Conflict
and Control: The 4th Workshop on Open Source
Software Engineering, International Conference on
Software Engineering, Edinburgh, Scotland. (2004, May
25).

[4] Flanagan, D. Java in a Nutshell (3rd Ed.). Sebastopol:
O Reilly & Associates, Inc. (1999).

[5] Glover, A. In pursuit of code quality: Monitoring
cyclomatic complexity, Retrieved 3/5/2007, from
http://www-128.ibm.com/developerworks/java/library/j-
cq03316/ (2006a).

[6] Glover, A. In pursuit of code quality: Tame the
chatterbox. Retrieved 3/5/2007, from http://www-
128.ibm.com/developerworks/java/library/j-cq06306/
(2006b).

[7] Glover, A. In pursuit of code quality: Code quality for
software architects. Retrieved 5/15/2008, from
http://www.ibm.com/developerworks/java/library/j-
cq04256/ (2006c).

[8] Gumpta, S. Package design. Retrieved 2/22/2008,
from
http://javaboutique.internet.com/tutorials/PackageDesig
n/index.html (2008).

[9] Johnson, J. P. Open source software: Private provision
of a public good, Journal of Economic and
Management Strategy, 11(4), 637-662. (2002).

[10] Kan, S. Metrics and Models in Software Quality
Engineering (2nd Ed). Reading: Addison Wesley
Professional. (2002).

[11] Lincke, R. "Validation of a Standard- and Metric-Based
Software Quality Model Creating the Prerequisites for
Experimentation." Licentiate Thesis. Reports from MSI.
Växjö University. (2007).

[12] Liu, X., & Iyer, B. Design architecture, developer
networks, and performance of Open Source Software

projects, Proceedings of the Twenty-Eighth
International Conference on Information Systems
(ICIS2007), Montreal, Canada. (2007).

[13] MacCormack, A., Rusnak, J., & Baldwin, C. Exploring
the structure of complex software designs: An empirical
study of open source and proprietary code,
Management Science, 52(7), 1015-1030. (2006).

[14] MacCormack, A., Rusnak, J., & Baldwin, C. The
impact of component modularity on design evolution:
Evidence from the software industry, Harvard Business
School Working Paper. (2007).

[15] Martin, R. OO design quality metrics: An analysis of
dependencies, Retrieved 1/13/2006, from
http://www.objectmentor.com/resources/articles/oodmet
rc.pdf (1994).

[16] McCabe, T. J. A complexity measure, IEEE
Transactions on Software Engineering, 2(4), 308-320.
(1976).

[17] O'Mahony, S. Guarding the commons: How community
managed software projects protect their work. Research
Policy, 32, 1179-1198. (2003).

[18] Parnas, D. L. On the criteria to be used in decomposing
systems into modules, Communications of the ACM,
15(9), 1053-1058. 1972.

[19] Parnas, D. L., Clements, P. C., & Weiss, D. M. The
modular structure of complex systems, IEEE
Transactions on Software Engineering, 11(3), 259-266.
(1985).

[20] Sanchez, R., & Mahoney, J. T. Modularity, flexibility,
and knowledge management in product and organization
design, Strategic Management Journal, 17, 63-76.
(1996).

[21] Simon, H. A. (1969). Sciences of the Artificial.
Cambridge, MA: MIT Press.

[22] Software Productivity Consortium, Software
Measurement Guidebook , International Thomson
Computer Press. (1995).

[23] Stewart, K. J., Ammeter, T. A., & Maruping, L.
Impacts of license choice and organizational

sponsorship on user interest and development activity in
open source software projects, Information Systems
Research, 17(2), 126-144. (2006).

[24] Sullivan, K. J., Griswold, W. G., Cai, Y. & Hallen, B.
The structure and value of modularity in software

design, In the Proceedings of the 8th European
Software Engineering Conference, Vienna, Austria.
(2001).

[25] Ulrich, K. T. Role of product architecture in the
manufacturing firm, Research Policy, 24, 419-440.
(1995).

[26] W3Schools. Browser Statistics. Retrieved 2/21/2008,
http://www.w3schools.com/browsers/browsers_stats.asp
(2008).

[27] Wheeler, D. A. Why Open Source Software/Free
Software (OSS, FLOSS, or FOSS)? Look at the
numbers! Retrieved 2/21/2008 from
http://www.dwheeler.com/oss_fs_why.html (2007).

[28] Witt, B., Baker, T., & Merritt, E. Software architecture
and design. New York: Van Nostrand Reinhold. (1994).

[29] Zhu, H. Software design methodology: From principles
to architectural styles. Oxford: Elsevier. (2005).

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

10

