
Using Software Archaeology To Measure Knowledge Loss in Software
Projects Due To Developer Turnover ∗

Daniel Izquierdo-Cortazar, Gregorio Robles, Felipe Ortega and Jesus M. Gonzalez-Barahona
GSyC/LibreSoft

Universidad Rey Juan Carlos (Madrid, Spain)
{dizquierdo, grex, jfelipe, jgb}@gsyc.escet.urjc.es

Abstract

Developer turnover can result in a major problem
when developing software. When senior developers
abandon a software project, they leave a knowledge gap
that has to be managed. In addition, new (junior) devel-
opers require some time in order to achieve the desired
level of productivity. In this paper, we present a method-
ology to measure the effect of knowledge loss due to de-
veloper turnover in software projects. For a given soft-
ware project, we measure the quantity of code that has
been authored by developers that do not belong to the
current development team, which we define as orphaned
code. Besides, we study how orphaned code is managed
by the project. Our methodology is based on the concept
of software archaeology, a derivation of software evolu-
tion. As case studies we have selected four FLOSS (free,
libre, open source software) projects, from purely driven
by volunteers to company-supported. The application
of our methodology to these case studies will give in-
sight into the turnover that these projects suffer and how
they have managed it and shows that this methodology
is worth being augmented in future research.

Keywords: developer turnover, orphaning, software
risk management, software archaeology

1. Introduction

Software development is an activity intense in hu-
man resources. The work of many developers is re-
quired to create almost any non-trivial piece of code.

∗This work has been funded in part by the European Commission,
under the FLOSSMETRICS (FP6-IST-5-033547), QUALOSS (FP6-
IST-5-033547) and QUALIPSO (FP6-IST-034763) projects, and by
the Spanish CICyT, project SobreSalto (TIN2007-66172).

The lifespan of a software system can range from sev-
eral years to decades. In such scenarios, the develop-
ment team in charge of the software may suffer from
turnover: old developers leave while new developers
join the project. With the abandonment of old, senior
developers, projects lose human resources experienced
both with the details of the software system and with the
organizational and cultural circumstances of the project.
New developers will need some time to become famil-
iar with both issues. In this regard, the time for volun-
teers to become core contributors to FLOSS 1 projects
has been measured to be 30 months in mean, since their
first contribution [11].

Although maintaining the current development team
could be thought as a plausible solution to mitigate
this problem, turnover is usually unavoidable. Being
a highly intellectual work, developers have a tendency
to lose the original motivation on the software system as
time passes by, and they have the natural desire to search
for new objectives. In this sense, high turnovers have
been observed in most large FLOSS projects, where sev-
eral generations of successive development teams have
been identified [21]. Although these environments are
partially, if not mostly, driven by volunteers, turnover in
industrial environments is also high.

In this paper, we present a methodology to measure
the effect of developer turnover in software projects. It
is based on quantifying the knowledge that developers
contribute to a project based on the number of lines of
code written for it. In case developers leave, their lines
become orphaned. The amount of orphaned lines can
be considered as a measure of the knowledge that the

1Through this paper we will use the term FLOSS to refer to “free,
libre, open source software”, including code that conforms either to the
definition of “free software” (according to the Free Software Founda-
tion) or “open source software” (according to the Open Source Initia-
tive).

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

1978-0-7695-3450-3/09 $25.00 © 2009 IEEE

project has lost with the abandonment of developers.
Hence, orphaned lines constitute a legacy of past devel-
opers. As the amount of orphaned lines increases, the
project may become more obscure to the current devel-
opment team, since major parts of the code were written
by developers who are no longer available.

Our methodology can be useful to determine the
knowledge that the current development team has about
the software system. This is specially interesting in
the case of software maintenance, a non-trivial task
that accumulates over 80% of total activity in software
projects [3]. In our vision, projects with a high share of
orphaned lines have an inferior starting position, since
they need to maintain code authored by others.

We have applied our methodology to several FLOSS
projects. Among them there are some led by companies,
following development models which can be considered
similar to those of non-FLOSS software development.
Therefore results can (in part) be extended to traditional
software development. However, the methodology is es-
pecially interesting for FLOSS projects, since the de-
scriptive information obtained can be of great interest
for decision-making developers. It should be noted that
regarding in-house development, companies may have
much more knowledge over projects they manage di-
rectly. Nonetheless, in the FLOSS world, where devel-
opment is performed following distributed, highly dy-
namic patterns, and involving volunteers, gaining insight
into a project is a major issue.

The structure of this paper is as follows. Next sec-
tion presents related research. The third section intro-
duces our methodology, based on extracting authorship
information by mining the source control management
system of software projects. We also highlight the new
aspects that software archaeology introduces in research
on software maintenance and evolution. The fourth sec-
tion gives some insight into the four FLOSS projects that
have been selected as case studies, while the fifth one
shows the results of applying our methodology on them.
Then, the methodology is discussed in detail, as well as
current limitations and challenges that further research
may target are also presented. Finally, conclusions are
drawn in the last section.

2. Related research

Risk management during the software development
and maintenance process has been a matter of research
for a long time [1]. Some of the risks affecting soft-
ware development are related to human resources. In
DeMarco and Lister’s classic Peopleware [4], several

chapters are devoted to the management of such issues.
Developer turnover is one of the most important factors
to be considered. Nonetheless, in the editors notice of a
special issue on software risk management [2], Boehm
and DeMarco state that “Indian software managers re-
vealed that they perceived personnel turnover as their
biggest source of risk”. A questionnaire addressed by
Otte [18] shows that around a 12% of the total SLOCs
in average is abandoned code. He demonstrated that
projects with high levels of abandoned code tend to re-
port more bugs.

Beyond pure industrial settings, recent research has
focused on this issue in the case of FLOSS projects.
Mockus et al. identified that in FLOSS projects a small,
but very active number of developers perform a large
part of the software development; they labelled this
group as the core group [16]. Robles et al. studied
the composition of the core group for several FLOSS
projects over time and found that only a minority of
projects shown a stable core group for many years [21].
Most projects showed a pattern where generations of de-
velopers successively take the lead for a limited amount
of time, generally in the range of two to four years.
Michlmayr et al. introduced the measure of half-life for
the human resources of a project [15]. They analyzed the
population of developers participating in a project and
identified the point in time when only half of them are
still active. In the case of Debian, the half-life observed
was 7.5 years. However, other studies have pointed
out that packages maintained by Debian developers who
abandoned the project were later maintained by others,
showing a natural “regeneration” process [22].

In general, developers who leave a project some-
how carry with them their knowledge about it. If that
knowledge is not shared with other developers, it can
be considered as disappearing from the project. How to
characterize that knowledge is a common case of study.
Hutchison [13] concludes that “The knowledge system
is not the individual but the entire history of problem
solving teams in which individuals actively participate”.
Ge et al., focusing on FLOSS projects, state that the ex-
pertise is not centered in just one member [7]. They
conclude that no single member is the owner of the
whole knowledge, even for specific parts of the code.
However it is a challenge to recover all this expertise
(knowledge) when developers leave, because it is usu-
ally not recorded anywhere. In the case of FLOSS
projects, it is recorded only in part, in mailing lists
archives, source code management or bug tracking sys-
tems, where source code, new ideas or comments are
registered. All this common knowledge can help the

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

2

“regeneration” of knowledge once a given developers
leaves.

German observed empirically that developers have
a tendency to work on specific parts of their software
project, so that it is easy to determine the files in which
they work. This behaviour has been labelled as “devel-
oper territoriality”: analogous to some species, develop-
ers have their own “territory” [9].

FLOSS projects are usually peculiar in that they de-
pend on the work of many volunteers (even when some
times hired developers also join the effort). Much of
the bazaar style of development roots on attracting third
party contributions, and in integrating new developers
in the project [20]. This introduces new challenges
in the management of human resources in a software
project [6, 24], as well as in the areas of quality and
reliance [14].

With respect to our methodology, which is based
on information retrieved from mining the source code
repositories of software projects, some previous re-
search lines exist. For example, Rysselberghe et al. [23]
proposed a method to study the changes performed on
a software system hosted in a source code repository.
The authors display a horizontal line for every file, and
changes to files are expressed by dots in that line. This
visually identifies which parts of the system are modified
over time, and also which files change simultaneously.

Gı̂rba et al. aggregate some information to identify
which developers implemented which parts of the sys-
tem [10]. They introduce colors for authors, assigning a
color to horizontal lines depending on who contributed
most to a file. This visualization can be used to identify
development patterns.

3. Theoretical framework

The base concept behind the methodology proposed
in this paper is orphaning. Briefly, orphaning can be
defined as the percentage of orphaned lines with respect
to the total number of source lines of code (SLOC in the
following).

The retrieval of information related to the origin of
each line is the basis of the study. “Who is the owner?”
and “when was it modified?” are the two main question
to be answered.

If we consider any point in the past, some lines
are authored by active committers (those who still con-
tribute to the project), while some others are authored
by non-active committers (those who already left the
project). The latter set of lines is defined as orphaned.
And by definition, those lines tend to disappear with

time, as the software experiments further changes.
The life of orphaned lines is different depending on

what is happening in the project. For instance, if de-
velopers are focused on adding new functionality, it is
likely that orphaned lines are only seldom touched. On
the contrary, in a project performing an intense code
refactoring process, many orphaned lines will disappear.
However, in both cases the proportion of orphaned lines
to total number of lines can evolve in a similar way.
Therefore, a high (or low) orphaning does not necessar-
ily mean anything about the past history of the project.
On the contrary, it can reflect current trends in it.

The idea of considering orphaned lines brings this
study into the field of software archaeology2, which can
be seen as an extension to traditional software evolution.
As Hunt states it [12], researchers working in this field
deal, as archaeologists, with artifacts remaining from the
past.

Although the concept of software archaeology was
conceived with large legacy systems in mind, it is valid
for any type of software with independence of age and
size. Its main basis is the need that developers have,
when maintaining a software product, to deal with code
that was modified in possibly many points over time by
many different developers.

The idea of relating archaeology to software mainte-
nance can be tracked back to the OOPSLA 2001 Work-
shop on Software Archeology, organized by Ward Cun-
ningham et al. The promoters of this workshop had a
set of assumptions, being the first one the rationale for
using the archaeology concept:

“[Software] [a]rch[a]eology is a useful
metaphor: programmers try to understand
what was in the minds of other developers
using only the artifacts left behind. They
are hampered because the artifacts were not
created to communicate to the future, because
only part of what was originally created
has been preserved, and because relics from
different eras are intermingled.”

Up to now, growth studies in software evolution have
been based on considering snapshots of a software sys-
tem over time. As depicted in figure 1, for the software
evolution metaphor the software engineer is aware of
how the software has changed. Based upon these ob-
servations, some conclusions can be derived.

In general, the view provided by software evolution
implies a situation which is not that important for the

2In American English archeology, comes from the Greek meaning
arqaios (ancient) and lógos (word/speech).

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

3

Figure 1. Software evolution point of view.

maintenance of a software system. It is the current state
of the sources which becomes the most important is-
sue, being all previous states less important, especially
if nothing is left behind. Figure 2 shows the approxi-
mation of software archaeology; the software engineer
looks backwards through the current state of the soft-
ware. The current state of the software will be heavily
influenced by previous states of the software system, but
only those that have persisted are of interest. That is,
code and other artifacts that cannot be found in the latest
version are uninteresting.

Figure 2. Software archaeology point of view. The
software engineer views from the current state of the
software into the past.

The human team in charge of the maintenance pro-
cess should also be considered to characterize the ag-
ing of a system. A maintainer who has some knowl-
edge about a system will maintain it better than some-
body with no experience with it. Introducing these as-
pects into our archaeology framework is not difficult, as
changes are associated to the humans performing them.
Hence, we can expect that developers who introduced
code which still persists in the system have a certain ad-
vantage when maintaining it. The opposite is also true:
losing a developer with a large experience contributing
to the project, (i.e. who has done many changes), will
affect the maintainability and aging of the software.

4. Methodology

The methodology considers projects that store source
code in a SCM (source code management) system, such

as CVS or SVN (Subversion). Therefore, the whole
lifespan of projects can be analyzed.

4.1 Definitions

We define the following concepts:

• Line of code: line finishing with a newline or end of
file character, and containing at least one character
that is not a blank space or comment.

• Author: Original developer of a line of code.

• Commit: Change(s) made by a committer to source
code. In a change, lines can be added or deleted
(modification is considered as a deletion followed
by an addition, which is enough for tracking the
history of authors of lines).

• Current state of the code: Lines of code included in
the current version of the software. This is the set
of lines added minus those deleted.

• Past state of the code: Lines of code included in
past versions of the software. This is the set of lines
added minus those deleted before that date. In other
words, it is the source code base obtained in a given
date. The current state of the code is, therefore,
the past state of the code when the specified date is
today.

• Committer: Developer with write access to the
SCM system, who can therefore modify the files
stored in it by performing commits. A committer
can be the author of the source code he commits or
not, as projects do not provide write access to any-
one. Hence, third-party contributions are not com-
mitted directly by their original authors, but by a
committer.

• Non-active committer: Committer with no activity
in the SCM system since a given date in the past.
The timespan for which a committer has been con-
sidered as non-active in this paper is one year, al-
though other values could be considered.

• Orphaned Line: Line of code that can be found in
the current state of the code, but which was com-
mitted by a non-active committer.

Thanks to the metadata stored in the SCM, it is pos-
sible to determine when a line was introduced, who in-
troduced it, and its content (needed to identify that it is
not a blank line or a comment).

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

4

In the rest of the paper we assume that committers
have complete knowledge over the lines they commit,
i.e., that a committer is fully aware of all the lines that
he introduces into the SCM system. This means that,
although not necessarily being the authors, committers
have a similar capacity of understanding, modifying and
explaining the introduced lines as if they had authored
them.

4.2 Process

The process consists of several steps that have been
implemented in a software program called carnarvon,
which works with CVS or SVN repositories. Carnar-
von downloads (i.e., checks out) the current state of the
code, and then it retrieves information about the commit-
ter who introduced each of the source code lines found
in source code files.

To obtain the information about commmitters, the an-
notate command of the SCM is used3. Table 1 shows a
(slightly modified) excerpt of the annotated output for
the src/keymap.c file from GNU Emacs, extracted from
its CVS repository. The structure of the CVS annotate
output is as follows. For each line, the first column con-
tains the file revision in which it was introduced as it is
now. After it, within brackets, the username and date of
the commit. Finally, the content of the line. The struc-
ture of the SVN or other SCM output of the annotate
(or equivalent) command is slightly different, but also
contains the information relevant to this study.

The analysis considers only files with source code.
Therefore, documentation or translation files are ignored
in this process. Carnarvon stores all this information in
a database, in which each relevant line corresponds to an
entry in a table. The most important fields of that entry
are:

• committer id - Committer who introduced the
line.

• file id - File containing the line.

• date - Date when the line was introduced.

If the current version of the software is considered,
information is obtained about how old are each of the
lines that compose the software, as well as who com-
mitted them. This allows, for instance, to know how
many of the current lines of code are older than 1 year,

3The annotate has several alias, being blame and praise other pos-
sibilities.

or how many of those, that are currently part of the soft-
ware were committed by developers that left the project
1 year ago (or earlier), are orphaned lines.

Since this can be done for any point in time, the same
study can be performed for past states of the code. For
instance, the version of the code corresponding to one
year ago can be checked out, quantifying how many
lines were, at that moment, at least one year old (i.e.,
were committed more than two years ago and were still
present one year ago), or how many of them were or-
phaned lines then (i.e., were part of the past state of
the code and were committed by developers leaving the
project at least 2 year ago).

To perform an evolutive analysis, several tables (one
for each iteration) are constructed. carnarvon also stores
information about committers, and a hierarchical struc-
ture of the directory tree and files.

5. Case studies

We have applied our methodology on four FLOSS
projects, which will be presented in this section. All of
them are part of the GNOME platform, a desktop en-
vironment for UNIX-like systems. Hence, they share
a common development culture (rules, procedures and
ways to join a project, among others) [8]. But they differ
on some key issues that made them worth to be studied,
specially with respect to the composition of their devel-
opment teams:

• Evolution is a groupware solution that combines
e-mail, calendar, address book and task list man-
agements functions. It is a good representative of
company-driven FLOSS projects, although with a
large quantity of contributions by the community.
It was the flagship application of Ximian, before
it was taken over by Novell. Since then, its main-
tenance has been outsourced to a Novell team in
India.

• GIMP (GNU Image Manipulation Program) is an
outstanding graphics editor. It is more than 12
years old, although it uses a SCM system only
since 1998. The original authors of the GIMP left
the project, and a new generation of volunteers has
taken it over.

• Evince is a document viewer for PDF and
PostScript. It started as a rewrite of GPdf —in
fact, the commits before 2004 are from the origi-
nal source code base. So, it is a good representative
of a product that is completely taken over by a new
team in order to be revamped.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

5

[...]
1.246 (pj 13-Nov-01): /* Optional arg STRING supplies menu name for the keymap
1.246 (pj 13-Nov-01): in case you use it as a menu with ‘x-popup-menu’. */)
1.246 (pj 13-Nov-01): (string)
1.8 (rms 11-Sep-92): Lisp_Object string;
1.8 (rms 11-Sep-92): {
1.8 (rms 11-Sep-92): Lisp_Object tail;
1.8 (rms 11-Sep-92): if (!NILP (string))
1.8 (rms 11-Sep-92): tail = Fcons (string, Qnil);
1.8 (rms 11-Sep-92): else
1.8 (rms 11-Sep-92): tail = Qnil;
1.1 (jimb 06-May-91): return Fcons (Qkeymap,
1.137 (rms 13-May-97): Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
1.1 (jimb 06-May-91): }
[...]

Table 1. CVS annotate output for the src/keymap.c file of the GNU Emacs project (excerpt).

• Finally, Nautilus is the official file manager for the
GNOME desktop. It is an important project in
GNOME (it manages the desktop, for instance) and
has also a long history: it started as the flagship ap-
plication of a company that went bankrupt in 2001
(Eazel) and has been taken over since then by the
GNOME community.

6. Results

To present the results of applying the aforementioned
methodology on the projects selected as case studies, we
start depicting the evolution over time of the number of
orphaned lines of code versus the total lines of code in
the projects. Then, the relative (orphaned vs. total lines)
evolution will be shown. Finally, the evolution of or-
phaned code is presented, to observe whether the code
from non-active developers is removed quickly, progres-
sively, or not at all.

6.1 Total lines vs. orphaned Lines

Figures 3 and 4 show the evolution of the number of
lines of source code, also known as the software growth
curve, and the evolution of the number of orphaned
lines for the four projects under study. To obtain these
graphs we sampled the repository every month, obtain-
ing a monthly snapshot that we consider in each case as
the past state of the code.

The evolution for GIMP and Evolution can be seen
in Figure 3. The growth curve of GIMP has been oscil-
lating around 800,000 lines of code for the last 10 years,
with an tendency to increase from 1998 to 2001, then
some net code removal until 2003, and from then on a

1998-02-28 2000-02-28 2002-03-28 2004-03-28 2006-03-28

Time

0

200000

400000

600000

800000

1000000

1200000

N
u
m

b
e
r

o
f

L
in

e
s

Ev. Total Lines
Ev. Orph. Lines
GIMP Total Lines
GIMP Orph. Lines

Size and Orphaned Lines Evolution

Figure 3. Evolution of total size and number of or-
phaned lines for Evolution and GIMP.

timid growth until today. The evolution of the orphan-
ing curve can be split into two parts. Before mid-1999,
there was almost no orphaning. Then, one of the major
contributors to GIMP left the project and almost half of
the source code became orphaned. The amount of or-
phaned code has been decreasing since then. Since the
amount of total code for the project has almost remained
the same, we can state that the amount of orphaned code
also decreases in relative terms.

In the case of Evolution, the growth curve has an
S-like shape until 2004. After that point, a significant
quantity of code has been removed twice from the main
trunk, causing a fall in the total number of lines. The
evolution of orphaning also has several phases. Up to
2000, almost no orphaned lines exist. Then, until 2002,
a small number of them appear that remain almost con-
stant in time. There is a first raise in the number of or-
phaned lines in 2002 which gets stabilized until a sec-
ond big jump in 2005. All in all, in relative terms, the

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

6

orphaned curve tends to become closer to the software
growth curve as time passes by.

1998-02-28 2000-02-28 2002-03-28 2004-03-28 2006-03-28

Time

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

N
u
m

b
e
r

o
f

L
in

e
s

Evince Total Lines
Evince Orph. Lines
Nautilus Total Lines
Nautilus Orph. Lines

Size and Orphaned Lines Evolution

Figure 4. Evolution of total size and number of or-
phaned lines for Evince and Nautilus.

Figure 4 provides the same information, but for
Evince and Nautilus. Regarding size, Evince is a
medium-sized project of around 100,000 lines of code.
Early in 2005, the old Xpdf part was removed, result-
ing in a loss of over half of its size and a mild poste-
rior growth that hints to the addition of new functional-
ity included in Evince in recent releases. The orphaning
curve gives plenty of information that allows us to bet-
ter understand the history of Evince. Between 2002 and
2004, a group of developers worked on Evince, but then
the project was taken over by a different group that de-
cided to remove a large part of the code base, to maintain
part of the old code base and to develop new functional-
ity.

With respect to Nautilus, we find a similar behaviour
to that of Evolution. In this case large additions of code
can be observed, as well as large removals, shown by
vertical lines in the software growth curve. Since more
than 5 years ago, Nautilus has an almost stable amount
of lines of code. Regarding its orphaning curve, a steady
raise can be observed, up to the point that in late 2002
all lines in the project were orphaned. Since then, the
number of orphaned lines tended to decrease.

Figure 5 shows the evolution over time of the or-
phaned lines, compared to the total size of the project.
Many lessons can be learned about the projects studied
here. Regarding GIMP, the most important event hap-
pens when a main developer abandons the project back
in 1999. Since then, it has managed to lower the share
of orphaned lines gradually. So, even when that aban-
donment was a great loss in knowledge, the project has
achieved to counter it and to have values of orphaning
that are currently close to 20%. This can be seen as a low

1998-02-28 1999-08-28 2001-02-28 2002-09-28 2004-03-28 2005-09-28

Time

0

0,2

0,4

0,6

0,8

1

P
e
rc

e
n
ta

g
e
 o

f
L
in

e
s

Evolution
GIMP
Evince
Nautilus

of Orph. Lines / # Total Lines

Figure 5. Evolution of orphaned lines relative to the
total number of lines.

risk value, since a vast majority of the code is known to
the developers.

The opposite behaviour can be observed in Evolu-
tion. The project featured low values of orphaning dur-
ing 2001 and 2002, coincident with a high activity by
Ximian. Since then, the share of orphaned lines has
been growing steadily, up to a point where today almost
80% of the code has been introduced by currently non-
active developers. This supposes a high risk in the main-
tenance of the project, as the team now in charge is not
the one that introduced the code into the repository.

Nautilus has a mixed behaviour. Up to mid-2002 it
shows a high risk due to large amounts of orphaned code
when it achieved values of over 80%, but the trend since
then has been to lower the share of orphaned code, with
current values lying under 60%. As the software size
has not grown much during the last years, this may be
an indicative for maintenance work such as refactorings.
In any case, compared to Evolution, it seems that the
current team in charge of the maintenance of the project
has better knowledge about it, which would mean that
the risk factor is lower.

Finally, Evince shows the shape of a project that has
been completely abandoned (we find orphaning shares
of 100%) and taken over several times. Since its last
abandonment (in early 2005), a large effort has been de-
voted to lower the amount of orphaned lines; so, val-
ues of orphaning as low as 10% could be measured in
mid-2005. But, again, as an important contributor left
the project, much parts of the code became orphaned in
late-2005 with values over 60%. In any case, the current
trend is to lower the amount of orphaned code, in this
case by adding new functionality (new code) and main-
taining the old one. Regarding risk, we have to consider
that Evince is the smallest of all the projects under study,

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

7

which makes the amount of orphaned lines of code not
such a a major concern, while it explains much of its
instability as well.

6.2 Evolution of orphaned lines

So far, the amount of code that can be assigned to
non-active committers has been considered. In this sub-
section, the attention is focused on what happens to that
code: how does orphaned code evolve over time. By
definition, the number of orphaned lines is a decreasing
function as non-active developers cannot add new lines.
But, as in the case of the half-life measure for radioac-
tive elements which was applied to the abandonment of
a population of developers in FLOSS projects [15], these
curves could give us further insight about what happens
to code from non-active developers.

2001-05-28 2002-09-28 2003-12-28 2005-03-28 2006-06-28 2007-09-28

Time

0

100000

200000

300000

N
u
m

b
e
r

o
f

L
in

e
s

Evolution 03
GIMP 03
Evolution 05
GIMP 05
Evolution 07
GIMP 07

Orphaned Lines Evolution. Evolution and GIMP.

Figure 6. Evolution of orphaned lines for the Evolu-
tion and GIMP projects. The lines have been selected
for three periods: those older than 7 years (07), those
older than 5 years (05) and those older than 3 years (03).

Figure 6 depicts the pace at which these orphaned
lines are removed in Evolution and GIMP. Lines marked
as orphaned three, five and seven years ago, have been
considered. For each of these groups, their decrease over
time has been studied. GIMP and Evolution show a dif-
ferent story in this respect. Evolution shows a gap due to
code removal in late 2003, and only small decreases over
time. In GIMP orphaned lines are removed at a higher
pace. This is indicative of a higher effort in maintain-
ing orphaned code in GIMP than in Evolution, which
is consistent with the results discussed in the previous
subsection.

Figure 7 depicts the same curves for Nautilus and
Evince. In the case of Evince lines from non-active com-
mitters are removed with time, suggesting the idea that
“if you are not participating in the project your code is

2001-05-28 2002-09-28 2003-12-28 2005-03-28 2006-06-28 2007-09-28

Time

0

20000

40000

60000

80000

100000

120000

N
u
m

b
e
r

o
f

L
in

e
s

Evince 03
Nautilus 03
Evince 05
Nautilus 05
Evince 07
Nautilus 07

Orphaned Lines Evolution. Evince and Nautilus.

Figure 7. Evolution of orphaned lines for the Nautilus
and Evince projects. The lines have been selected for
three periods: those older than 7 years (07), those older
than 5 years (05) and those older than 3 years (03).

removed”. Nautilus, on the other hand, is similar to Evo-
lution, since decreases in orphaned lines are mainly due
to removal of large parts of the system. Besides that, the
decline in the number of orphaned lines is minimal.

7. Discussion

In this section limitations and future challenges will
be discussed.

7.1 Limitations

Several limitations have been detected during the ap-
plication of the methodology:

• Presence of a gate-keeper: performing changes
(commits) to a repository is only possible for
those with write access. Depending on the policy,
projects may have a small set of developers who
are in charge of committing all the changes. This
will skew the results produced by our methodology
in two ways: first, the committer will be assigned
code that he may not know, and second, even if
the committer is non-active the original author may
be present avoiding that the lines of code become
orphaned (impersonation). This limitation has a
technical and organizational solution: some source
code managements (SCM), like git but not CVS
or SVN, allow to make a distinction between the
author and the committer. If projects introduce a
policy to indicate this, then this would counter the
effect of this limitation. On the other hand, gate-
keepers are usually in charge of reviewing the code

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

8

they commit, so the assumption that they know it is
not a weak one; in addition, many casual contribu-
tors do not participate for long in FLOSS projects,
thus the problem of impersonation will mostly be
insignificant.

• Absence of full memory. Our methodology as-
sumes that authors have a complete awareness of
their own code. This may be true for code written
in recent times, but is a risky assumption for older
code, especially in large software systems. A way
of addressing this issue would be to treat lines of
code differently depending on their age.

• Introducing software comprehension. By now, we
consider all lines of code as equal, not attending to
quality factors such as how easy it is to understand
or how well it is structured. A good example of
this is that, poorly-structured spaghetti code from
an active committer could be by far less easy to
maintain than well-written orphaned code. Solving
this problem is not an easy task; methods proposed
in the area of software comprehension or including
complexity information could be added to target it.

7.2 Future challenges

In addition to the limitations, we have also found
some challenges for future research that would enhance
the methodology:

• The information provided by SCM systems is on a
line by line basis. However, an optimal granularity
for the methodology would be at the function (or
method) level. The rational for this is that develop-
ers do not think on a line by line basis, but consider
larger pieces of code with some semantic meaning.
The use of functions (methods) as the minimum
granularity level will have to deal with ways of
summarizing the information of several lines into a
unique parameter, that should be defined with care.
The authors of this paper are already working on
this idea.

• A major drawback of the methodology is that the
assumption that orphaned code is more difficult
to maintain than non-orphaned, although plausible,
has not been demonstrated so far. The use of infor-
mation from other data sources, such as bug notifi-
cations, that could be matched to the changes to the
repository, would allow to compare orphaned code
and non-orphaned for such evidence. Another in-
teresting topic of research would be to analyze if

old code (i.e., code that was introduce long time
ago) is more maintainable than young code (i.e.,
code submitted recently). The authors of this paper
have found some relevant literature about software
aging [19] and code decay [5], but none of these
studies present conclusive results about this ques-
tion. Also, Otte [18] has demonstrated that projects
with high levels of abandoned code tend to report
more bugs related to quality issues. However, there
are some differences between the definition of or-
phaned and abandoned code.

• It would be useful to match the methodology with
the traditional metrics for assessing levels of main-
tenance [17], or with some existing models to pre-
dict maintenance effort on FLOSS projects [25].

• More software projects, from different environ-
ments should be studied to enrich the methodology
and provide new insight into the facts that can be
extracted from it.

8. Conclusions

The turnover of developers is sometimes a big prob-
lem for companies and FLOSS projects. Generally
speaking, the time to learn how the project works causes
great productivity losses, which are unavoidable when
senior developers leave the project and are substituted
by others, new to the project, or to the parts of the code
they have to maintain.

The methodology presented in this paper tries to mea-
sure quantitatively the effect of turnover in software
projects by using the amount of code contributed by a
developer. Using the described methodology we have
studied four FLOSS projects and extracted some conclu-
sions from our preliminary analysis. In this regard, we
have observed several situations, ranging from a project
that that tries hard to keep the code known to the current
development team (GIMP), to a project in which a high
turnover has caused that the current maintenance team
has authored a very small portion of the total code (Evo-
lution). In between, Evince provides an example of a
project where developers retake other’s code and rewrite
it, while Nautilus illustrates the case of an abandoned
project which is taken over by a new team.

The analyzed cases allows to state that the use of
orphaned lines, especially in relative terms to the total
number of lines, is a good measure of the health of the
software project. This information could be very valu-
able for managers, especially for those who do not have
insight into the specifics of the development process, a

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

9

common situation for many managers that use, but do
not participate in FLOSS projects. Insiders could use
this information to avoid risks (e.g. modules plenty of
orphaned lines where the current core team has never
worked on) or to strengthen the maintenance activities
of a project (e.g. detecting those ”dead” modules).

All in all, the presented methodology, based on the
idea of software archaeology, provides useful informa-
tion to address the issue of developer turnover in soft-
ware projects, even if some limitations, both technical
(gate-keeper effect, granularity, etc.) and conceptual
(old code vs. young code, the effect of the quality, full
memory), have still to be dealt with in the future.

References

[1] B. W. Boehm. Software risk management: Principles
and practices. IEEE Softw., 8(1):32–41, 1991.

[2] B. W. Boehm and T. DeMarco. Guest editors’ intro-
duction: Software risk management. IEEE Software,
14(3):17–19, 1997.

[3] S. A. Conger. The New Software Engineering. Interna-
tional Thomson Publishing, 1994.

[4] T. De Marco and T. Lister. Peopleware : Productive
Projects and Teams, 2nd Ed. Dorset House Publishing
Company, Incorporated, 1999.

[5] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? Assessing the evidence
from change management data. IEEE Transactions on
Software Engineering, 27(1):1–12, 2001.

[6] K. Fogel. Producing Open Source Software : How to
Run a Successful Free Software Project. O’Reilly Media,
Inc., 2005.

[7] X. Ge, Y. Dong, and K. Huang. Shared knowledge con-
struction process in an open-source software develop-
ment community: an investigation of the gallery com-
munity. In ICLS ’06: Proceedings of the 7th interna-
tional conference on Learning sciences, pages 189–195.
International Society of the Learning Sciences, 2006.

[8] D. M. German. The GNOME project: a case study of
open source, global software development. Journal of
Software Process: Improvement and Practice, 8(4):201–
215, 2004.

[9] D. M. German. Using software trails to reconstruct the
evolution of software. Journal of Software Maintenance
and Evolution: Research and Practice, 16(6):367–384,
2004.

[10] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse. How
developers drive software evolution. In Proceedings of
the International Workshop on Principles in Software
Evolution, pages 113–122, Lisboa, Portugal, September
2005.

[11] I. Herraiz, G. Robles, J. J. Amor, T. Romera, and J. M.
González-Barahona. The processes of joining in global
distributed software projects. In GSD ’06: Proceedings

of the 2006 international workshop on Global software
development for the practitioner, pages 27–33, New
York, NY, USA, 2006. ACM Press.

[12] A. Hunt and D. Thomas. Software Archaeology. IEEE
Software, 19(2):20–22, March/April 2002.

[13] C. Hutchison. Personal knowledge, team knowledge,
real knowledge. EUROCON’2001, Trends in Communi-
cations, International Conference on., 1:247–250 vol.1,
2001.

[14] M. Michlmayr and B. M. Hill. Quality and the reliance
on individuals in free software projects. In Proceedings
of the 3rd Workshop on Open Source Software Engineer-
ing, pages 105–109, Portland, USA, 2003.

[15] M. Michlmayr, G. Robles, and J. M. Gonzalez-
Barahona. Volunteers in large libre software projects:
A quantitative analysis over time. In S. K. Sowe, I. G.
Stamelos, and I. Samoladas, editors, Emerging Free
and Open Source Software Practices, pages 1–24. Idea
Group Publishing, Hershey, Pennsylvania, USA, 2007.

[16] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of Open Source software development: Apache
and Mozilla. ACM Transactions on Software Engineer-
ing and Methodology, 11(3):309–346, 2002.

[17] P. Oman and J. Hagemeister. Metrics for assessing
a software system’s maintainability. Software Mainte-
nance, 1992. Proceerdings., Conference on, pages 337–
344, Nov 1992.

[18] T. Otte, R. Moreton, and H. D. Knoell. Applied quality
assurance methods under the open source development
model. In COMPSAC, pages 1247–1252, 2008.

[19] D. L. Parnas. Software aging. In Proceedings of the In-
ternational Conference on Software Engineering, pages
279–287, Sorrento, Italy, May 1994.

[20] E. S. Raymond. The cathedral and the bazar. First
Monday, 3(3), March 1998.
http://www.firstmonday.dk/issues/
issue3_3/raymond/.

[21] G. Robles. Contributor turnover in libre software
projects. In Proceedings of the Second International
Conference on Open Source Systems, 2006.

[22] G. Robles, J. M. Gonzalez-Barahona, and
M. Michlmayr. Evolution of volunteer participa-
tion in libre software projects: evidence from Debian.
In Proceedings of the 1st International Conference on
Open Source Systems, pages 100–107, Genoa, Italy,
July 2005.

[23] F. V. Rysselberghe and S. Demeyer. Studying software
evolution information by visualizing the change history.
In International Conference on Software Maintenance,
pages 328–337, 2004.

[24] J. Sandred. Managing Open Source Projects. Wiley
Computer Publishing, 2001.

[25] L. Yu. Indirectly predicting the maintenance effort of
open-source software: Research articles. J. Softw. Maint.
Evol., 18(5):311–332, 2006.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

10

