
Multiple Social Networks Analysis of FLOSS Projects using Sargas

Samuel F. de Sousa Júnior
Universidade Federal do

Pará, Brazil
sfelixjr@gmail.com

Marco A. Balieiro
Universidade Federal do

Pará, Brazil
ma.balieiro@gmail.com

Jean M. dos R. Costa
Universidade Federal do

Pará, Brazil
jeanmrc@gmail.com

Cleidson R. B. de Souza
Universidade Federal do

Pará, Brazil
cdesouza@ufpa.br

Abstract
Due to their characteristics and claimed advantages,
several researchers have been investigating free and
open-source projects. Different aspects are being
studied: for instance, what motivates developers to join
FLOSS projects, the tools, processes and practices
used in FLOSS projects, the evolution of FLOSS
communities among other things. Researchers have
studied collaboration and coordination of open source
software developers using an approach known as
social network analysis and have gained important
insights about these projects. Most researchers,
however, have not focused on the integrated study of
these networks and, accordingly, in their
interrelationships. This paper describes an approach
and tool to combine multiple social networks to study
the evolution of open-source projects. Our tool, named
Sargas,allows comparison and visualization of
different social networks at the same time. Initial
results of our analysis can be used to extend the
�onion-model� of open source participation.

1. Introduction

Free/libre and open source software development
(FLOSS) is an approach in which loosely-knit
collections of volunteers, collaborating over the public
Internet, create software systems whose source code is
available to all. There are several claimed advantages
of this approach, including faster development cycles,
and more secure and robust software products. Due to
these advantages and other characteristics, several
researchers have been investigating open-source
projects and communities. They want to find out what
motivates developers to join FLOSS projects, the tools,
processes and practices used in FLOSS projects [5,6],
the evolution of FLOSS communities [7,8], among
other aspects of these successful projects.

In particular, researchers have studied collaboration
and coordination of open source software developers
using an approach known as social network analysis
[13]. Social network analysis allows one to study the
relationship among developers and/or projects to
understand their structural properties. For instance,
Lopez-Fernandez et al. [2] have looked at what they
call �committer networks�: social networks where each
vertex corresponds to a particular committer (a
software developer) and two committers are connected
when they have contributed to at least one common
module. This is one type of social network that has
been used by researchers. There are several others that
model a different relationship between software
developers, i.e., a different aspect of a FLOSS project.
This has been very fruitful, since research using social
network analysis methods has provided important
insights about FLOSS projects.

However, researchers have not focused on the
integrated study of different social networks, i.e.,
previous research applying SNA to FLOSS projects
has looked at interrelated aspects in isolation. The
work described in this paper aims to alleviate this
limitation by combining multiple social networks to
study the evolution of open-source projects, i.e., to find
out how these different social networks influence or
are related to each other. This work extends our
ongoing work on software tools to study open-source
communities [18]. In this paper, we describe Sargas, a
multiple social networks visualization tool that allows
comparison and visualization of different social
networks metrics at the same time through a StarPlot-
based [10] visualization.

The rest of this paper is organized as follows.
Section 2 presents the motivation for our work. Next,
the Sargas visualization tool is presented. In Section 4
we present our methodology which includes a brief
social network analysis introduction, the description of
the project used, and the other tools (TransFlow and
OSSNetwork) used to generate the data needed by
Sargas. In Section 5, we present the results and
discussion of the PMD project used as a case study in

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

1978-0-7695-3450-3/09 $25.00 © 2009 IEEE

this paper. Finally, conclusions and future work are
presented.

2. Motivation

Researchers from different areas ranging from
software development to economics and social science
have been studying FLOSS projects. As expected,
different research approaches have been used including
interviews, surveys, regression models, case studies,
and so on. In this paper, we are mostly concerned with
the usage ofsocial network analysis methods [13] by
researchers interested inthe coordination of FLOSS
projects. Social network analysis allows one to study
the relationship among developers and/or projects to
understand their structural properties. An example of
this type of research is the work by Crowston and
Howison [17] who classify the network of developers
involved the bug-fixing tasks: it contains core
developers, co-developers who provide bug fixes and
active users who report bug fixes. In addition, Lopez-
Fernandez et al. [2], in contrast, have looked at
committer networks: networks where each vertex
corresponds to a particular committer and two
committers are connected when they have contributed
to at least one common module. Gloor [3] has looked
at networks of developers created from emails
exchanged among open source developers in order to
identify how innovation is achieved in open source
communities. Finally, de Souza et al. [4] have looked
at social networks extracted from the source code to
identify transitions from the periphery to the core of a
project, and vice-versa. These are only a few examples
of SNA approaches for the study of open source
projects. Others include [1] and [9].

Each one of these researchers has provided
important insights into the phenomenon of
collaborative software production in open/free software
projects. In fact, each one of these networks represents
a different relation between software developers.
However, researchers have not focused on the
combined study of these networks. That is, by looking
at individual aspects of a FLOSS projects, it is only
possible to partially understand these projects. For
instance, Crowston�s and Howison�s [17] work broadly
divides contributors into �developers� (who write part
of the code) and �users� (who might report bugs),
while in practice, �developers� are also �users�, that is,
contributors who write code also report bugs in the
software. By looking at different social networks (the
bug fixing network, the source-code network, the
network extracted from the mailing lists and so on) at
the same time, it is possible to extend the roles
performed by FLOSS contributors to more clearly

reflect the everyday practice of these contributors. In
short, the contribution of this paper is an approach and
tool to combine different social networks to understand
FLOSS projects.

In the following section, we describe Sargas, the
tool that instantiates our approach and analyzes
multiple social networks at the same time.

3. Sargas

Sargas is a multiple social networks visualization
tool developed in Java. The visualization method used
in Sargas is based on the StarPlot [10] visualization. In
this approach, a �star� is created for each user so that
each face of the �star� presents information about one
specific social network. Currently, we present
centrality measures [13] in each face of a star, so that it
is possible to represent multiple measures (one for each
social network) in a single representation. For instance,
it is possible to find out whether a high centrality
developer found in a source code network also has a
high centrality in the communication network through
the visual inspection of the two faces of this
developer�s star. Furthermore, when different
developers (and their associated stars) are aligned, it is
possible to easily compare the contribution of several
developers in different social networks at the same
time.

Figure 1 below presents an example of a Sargas-
generated visualization. In this visualization, we draw a
white circle around each star to indicate where the
mean-value is located, therefore, it is possible to
observe that actor user A has a centrality measure
below the average in the social network represented by
the yellow face (pointing north). In contrast, user B has
a centrality value above the average for the same social
network. That is, user B is more central than user A in
the social network represented by the yellow
face(north) of the star.

Figure 1 – An example of Sargas visualization.

Sargas works as follows. Its inputs are social

networks that can be extracted from dl or csv files. For
each social network, a centrality measure (currently,
degree, betweenness or information) can be selected. A

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

2

network generated by discussion about bugs or chat
conversations can be analyzed, for instance, using
betweenness centrality, allowing one to find the
potential developerswho are located in �between� other
developers, and, therefore who have some control of
the communication between two nonadjacent actors
[13]. On the other hand, in a social network extracted
from the source-code, it might be necessary to
calculate the degree centrality of each software
developer to understand how influential it is in the
structure of the code. In short, with Sargas it is possible
to use a different centrality measure for each social
network being analyzed.

One needs to be careful when comparing different
social networks: a social network generated from
source code can be quite different from a bug network
or mailing list network. For instance, if an actor has a
degree value of 120 in the chat conversations network,
but it has a value of centrality measure of 20 in a
source-code network, it would not be appropriate to
compare these values because they are based on
different measures of different social networks. To
overcome this problem, Sargas uses a statistical
approach, the z-score, to compare different
distributions. A z-score is computed for each centrality
measure of each software developer in each social
network. Z-scores are calculated based on the average
and standard deviation of each (social network)
distribution, so that they allow a particular centrality
value to be referenced by the number of standard
deviations it is above or below the mean of that social
network. In other words, because we use z-scores, it is
possible to compare different values of different
metrics because these values are transformed into new
values that describe how far the original values are
from the average value calculated for each network.

In Sargas visualization, the number of faces of the
star can vary. Accordingly, the degree between two
faces is calculated dynamically. For instance, for three
faces (i.e., three social networks), the degree between
these faces will be 120º, for four faces, it will be 90°,
and so on.

4. Methodology

4.1 Social Network Analysis

A social network can be defined as a set of
relationships between objects (or nodes) [11]. Nodes
can be people, entities, organizations or even all of
them. The relationship among entities can be any
connection they may have in common, e.g., an edge

can link people who work in the same department, or
developers who work in the same file.

Social networks are a way to understand and
analyze interactions and the social organization of a
group. Social Network Analysis (SNA) is the
application of mathematical techniques to study social
networks. Note that SNA does not focus in the
attributes of the nodes, but instead in their relationships
(the edges) [14].

A social network can be defined according to some
structural and topological properties. Some structural
properties include: node degree, weighted degree of a
node, distance centrality of the node, proximity degree,
and betweenness centrality [12].Topological properties
include: density of the network, distribution degree,
network diameter, and finally, cluster degree.

Social networks can be broadly classified in two-
types: 1-mode networks, which represent relationships
between social entities of the same type, for example,
who is friend of who, who asks for advice from who,
who depends on who; and 2-mode networks, which
represent relationships between different social
entities, for example, people who attended a meeting,
developers who fixed a given bug. It is important to
note here that from a 2-mode network, it is possible to
geta 1-mode network through mathematical operations
in the matrix [13]. For instance, if we have a developer
vs. bug matrix (2-mode) we can obtain a developer vs.
developer matrix (1-mode) through matrix operations.

4.2 The PMD Project

In order to validate the ideas presented in this
paper, we conducted a case study with a free/open
source project. The project analyzed is the PMD [21]: a
project in development since 2002. This project aims to
provide tools for Java source code analysis. It finds
unused variables, empty catch blocks, unnecessary
object creation, and so forth.

We extracted data to create and analyze four
different social networks for this project:

1. The social network for the open discussion
forum, which contains threads of general
discussion;

2. The social network for the developers
discussion list, the threads started and used by
developers to discuss issues regarding the
construction of the PMD project;

3. The social network extracted from the
discussions about the bugs; and

4. The social network extracted from the source
code.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

3

The interval of analysis for the first three networks
was from 2003/02/24 to 2003/11/03. These networks
were created using the OSSNetwork tool [18]. The
source code of the PMD project was collected starting
on 2002/06/24 as we will explain later.The social
network for the source code was created using the
Transflow tool. Both tools, OSSNetwork and
Transflow are described in the following subsections.

4.3 OSSNetwork

OSSNetwork is a tool that extracts information
from different FLOSS repositories to create social
networks. Extracted information includes discussion
about bugs, mailing lists, forums, etc. Information is
extracted by parsing HTML information available in
SourceForge, RubyForge or Codeplex repositories.
OSSNetwork also parsers mailing lists information
from the Apache community web-site and IRC data
from ircbrowse.com. After the parsing, OSSNetwork
allows its users to visualize the extracted information
through social network graphs (sociograms) and to
analyze these networks with SNA metrics. While the
parsing is performed on HTML, the visualization
subsystem is based in the JUNG framework [15]. The
social networks generated by the environment can be
exported to files in CSV and DL formats to be used in
other social network analysis tools like UCINet [16].

In short, the OSSNetwork environment allows one
to (i) retrieve information from FLOSS repositories,
(ii) store this information in a database, (iii) generate
different social networks from this information, and,
finally, and (iv) analyze these networks using tools to
manipulate, edit, and execute algorithms. The
OSSNetwork aims to minimize the effort of
researchers interested in the study of FLOSS
communities. This is done using modern software
engineering techniques that allow one to easily add
new FLOSS repositories, ways of creating social
networks and additional SNA metrics. More details can
be found in [18].

4.4 TransFlow

TransFlow is a plugin for the Eclipse IDE

(Integrated Development Environment) which allows
the collection of data from configuration management
repositories of both FLOSS or commercial projects. Its
goal is to understand the evolution of software
developers� source code contribution to open source

projects. Accordingly, it is necessary to extract
information from configuration management
repositories like SVN and CVS. Transflow calculates
metrics regarding these contributions using different
approaches. For the goal of this paper, Transflow
performs a co-changes analysis of the source code
modification history and creates a matrix where
software components are connected by taking into
account the frequency that they have been changed
together (i.e., in the same check-in): if two files have
been changed together in the same check-in, an edge is
created to link these two files. This approach is based
on Zimmermann and colleagues [19]. In other words,
by taking into account the history of the software
project, it is possible to create a matrix that describes
the dependencies between files that arise out of the
changes being made to these files. The values in the
cells of the matrix indicate the dependencies that a file
in a particular row has for each file in a particular
column. Once this matrix is created, this means that
project data has been collected and that dependencies
have been calculated. Then, a XML file is generated by
the tool in order to create different visualizations of the
history of the project activity.

For this paper, we are interested in a scatter-plot
visualization: Cartesian coordinates are used to display
values for two variables in a given dataset. An example
of such visualization generated by TransFlow for the
PMD project is shown in Figure 2. Each square
represents a check-in that has happened in the source
code repository. Colors of the squares are used to
identify authors who performed the commits. The X-
axis can be used to describe either the number
associated to the check-in or the date in which it
happened, while the Y-axis can describe either the
average centrality or the maximum centrality of the
files modified in a check-in. In Figure 2, the Y-axis
describes the average centrality of all files changed by
a particular commit, while in Figure 3 only the
maximum centrality is presented. The visualization
shown in Figure 3 was created using a function of the
tool that enables one to group commits of the same
author. In this particular case, commits are grouped in
groups of five.

The goal of the visualizations presented in Figures
2 and 3 is to investigate how open source software
developers� check-ins become more and more complex
over time: the centrality of the changes (represented in
the Y-axis) made by open source developers increased
over time (X-axis), indicating how these developers
become more and more central for the project.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

4

Figure 2 - Visualization of PMD Project in TransFlow considering the average centrality.

Figure 3 - Visualization of PMD Project in TransFlow considering the max centrality

and grouping the commits.

Since TransFlow generates matrices with
dependency information about the project files and has
access to authorship information (who changed each
artifact) from the configuration management
repository, it is possible to combine these two types of
information to create a social network that indicates
dependencies among software developers [20]. These
social networks are the ones used in the analysis
described in this paper.

Note that in order to create a social network of a
given date using this approach, we need the commits
or check-ins that were performed before that given
date, otherwise, there would not be no social network.
That is the reason why the source code of the PMD

project was collected starting on 2002/06/24 instead of
2003/02/24 as in the other social networks (mailing
lists and bugs).

4.5 Social network creation

To initiate our analysis, we extracted data from the

forums of (i) open discussion and (ii) developer
discussion, (iii) bug track system, and (iv) source-code
from the configuration management system of this
project. Social networks were created for each one of
these datasets.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

5

The social networks have been constructed in the
following way. First of all, we extracted information
(message in a forum thread, class created, message
related to a given bug and so forth) for each developer
who produced it, generating a developer vs.
information matrix. One matrix was created for each
social network. This matrix is a two-mode matrix.
After that, this matrix is multiplied by its transpose
matrix, resulting in a one-mode matrix of developer vs.
developer [13]. All non-zero values are considered as a
edge in the social network.

After the social networks were created, we
calculated different metrics for each one of these social
networks. To be more precise, information centrality
was calculated for the bugs and forums networks,
while the betweeness centrality was calculated for the
source code network. Each metric was visualized using
Sargas, so that a star represented each actor of these
networks and each face of the start displayed the
metric for that actor in the corresponding social
network. Whenever an actor did not participate in a
particular social network, the face of the star
corresponding to that social network would not be
drawn. Visual inspection of the star was then used to
identify distinct groups of actors based on patterns of
action and interaction (depending on their metrics) in
the social networks. To be more precise, we identified
six different groups that are discussed in the following
section alongside the illustrative Sargas representation
for that group.

5. Results

As mentioned before, we identified six different
groups that are discussed below. For our analysis of
the PMD project, the colors of each network are as
follow: an open discussion network is indicated by a
yellow face (face pointing south), bugs network are
indicated with white (face pointing north), the source
code network is filled with pink (face pointing east)
and the developers� discussion mailing list network is
indicated with the red color (face pointing west).

A) The first group represents actors who are
significantly present in three or four social networks at
the same time. Our interpretation is that these actors
are �brokers� using the social network terminology
[13]: because they actively participate in different
social networks, they are responsible for the flow of
information among them. For instance, they provide
information about users� needs to �core developers� or
implement these needs themselves [17].

We identified three actors that are present in all
four networks and two more actors who are present in
three social networks (developers, open discussion and

bugs networks). Their representation is depicted in
Figure 4. This group is represented by contributors user
1, user 2, user 3, user 4 and user 5. Within this group,
we can find the team manager, user 1.

Figure 4 – Group A: Brokers who exchange
information among different social networks.

B) The second group that we identified represents

members of the project who are both in the open
discussion and bugs networks. Figure 5 displays this
group. Developers in this group have a singular
pattern: they have the white (north) and the yellow
(south) faces of the star. In this case, our interpretation
of the data is that these members are responsible for
�translating� possible problems identified by PMD
users in the open discussion forum into actual bug
reports that are discussed in the bug discussion
network. As such, they perform an important role to
the success of the open source project.

C) The third group represents actors who are active
in both developers� and open discussion networks.
There are six developers in that category. In their
Sargas� representation displayed in Figure 6, they have
the red (west) and yellow (south) faces of the star. In
this Figure it is easy to observe that these actors are
central (highly active) in both networks.

A possible interpretation of this pattern of action
and interaction in open source communities is that
these developers perform the role of �user proxies�,
i.e., they collect users� needs discussed in the open
discussion forum and report them in the software
developers� forum.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

6

Figure 5 – Group B: users who contribute with

bug detection and submission

Figure 6 – Group C: User proxies.

D) The fourth group that we identified represents

the set of actors who are somewhat central in the
developers and bugs networks, but who are not present
in the source code network. That is to say, these
developers participate in all the discussion about the
open source project that occur in the PMD developers
forum and in the bugs networks. However, these
developers do not actively contribute source code to
the PMD project. This group is displayed in Figure 7.
There are only two developers in this group: user 16
and user 17. Note that user 16�s centrality in the source
code network was very small (as indicated by the small
pink face (east) of his corresponding star) that we
decided to assign this developer in this category.

Figure 7 – Group D: Active developers in the
technical discussion about the project, but

who do not make major changes in the source
code.

There are two alternative explanations for the work

performed by these developers. First, these developers
were core developers [13] in the past, but now they are
not part of the core anymore. Second, those might be
developers who are engaging more and more in the
discussion about the source code, but who were not yet
awarded commit privileges.

In order to eliminate these alternative explanations,
we used Transflow to get information about
contributions of these developers in two periods:
before and after the period analyzed in this paper. We
generated Transflow visualizations for these two
developers for these two periods. These visualizations
are similar to the ones described in Figure 2 and 3, and
they indicated whether these developers had committed
changes to the PMD repository in these periods and, if
that is the case, the evolution of the complexity of
these commits. Regarding user 17, we found no
evidence about him being a committer earlier in the
project, nor becoming a committer later. However, we
observed that user 16 has indeed made contributions to
the source code of the PMD project after our period of
analysis. His contributions to the project were
somewhat limited and included changes in the
documentation, credits and paths. Although one might
argue that these changes were not source code per se,
we argue that these changes are still relevant to the
success of the open source project.

E) There is only one actor who is only in the source
network and the open discussion at the same time: his
login is user 18 and he defines the fifth category that
we identified.

Figure 8 – Group E: Interaction with users.

F) Finally, there are different groups of project
members who are different from all other groups: these

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

7

actors participate in a single social network at a time.
For instance, there are members who only participate
in the source code network, others who only participate
in the open discussion forum (and consequently social
network) and the same is true for the developers�
forum and bug discussions. These groups are all
represented in Sargas in Figure 9.

Figure 9 – Group F: Members who are active

in only one network at a time.

In short, there are 110 actors. The brokers group
contains 5 actors. The bug detection group contains 4
actors. There are also 6 user proxies, 2 developers in
the fifth group and 1 actor in interaction with users
group. The isolated actors group has 50 actors in open
discussion�s list, 15 actors in the developers� forum, 13
actors in the bugs discussion network and finally, there
are 13 developers in the source-code network.

6. Discussion

The so-called �onion model� of participation has
been used to categorize the members of a FLOSS
project, i.e., despite the freedom of these projects; there
is some structure in the open source teams [17]. In this
model, open source members can be classified in only
one of two groups: the user group and the developer
group. In the developer group, there are the core
actors, who are responsible for contributing code and
the decision-making in the project. Core developers
also manage CVS releases and coordinate peripheral
and central developers. This group is generally small.
The second group of actors is the co-developers or
central developers. This group is more numerous than
the core developers and they contribute with bug fixes,
or submit patches, revisions, etc. Their contributions
are evaluated by the core developers. They can also
offer support and write documents. The third group is
the peripheral developers: they fix bugs (but not in a
regular basis) and submit contributions. Finally, there

is the project leader, who has the project vision and
gives the directions that should be followed. In the
user groups, there are active users and non-active
users, or passive users. Active users report bugs and
exchange information about them in the discussion
lists. They are important because this interaction with
developers is healthy to the open source project.
Passive users, on the other hand, have no interaction
with the development team. They just use the software
for their needs.

One problem with the �onion model� of open
source participation is that it classifies participants in
only one of two groups: the user group and the
developer group so that developers who perform
activities in the two groups are no easily classified. We
argue that by using multiple social network analysis as
we describe in this paper, it is possible to detect
nuances and details of open source participation that
are more expressive than the �onion model�.
Accordingly, we describe how the groups that we
identified in the previous section can be, to some
extent, mapped to the onion model, and furthermore,
how some of our groups are actual intersections
between roles in the onion model. For instance, group
A, the brokers, are members with high centralities
values who translate knowledge from users (in the
open discussion forum) to the core, active developers,
or active users who collaborate with bug submissions.
The group B represents the active users according to
the onion model, who are responsible for reporting
bugs, but in addition, we argue that these members also
identify bugs because they participate in the open
discussion forum.

The group of members called group C is very
important to the PMD project because it can be
understood as �user proxies�, that is, these members
act as bridges between users and developers. Note that
this particular role is not envisioned by the onion
model. In contrast, the group D is more or less
equivalent to peripheral developers in the onion model.

The group E had only one actor that we assumed
was a developer where his function is to be the
interaction with the community.

Finally, open source members generally classified
in group F represent actors who are active in one social
network only. Accordingly, team members who
participate in the open discussion forum are
�equivalent� to passive users in the onion model.

7. Conclusion and Future Work

Several authors have performed social network
analysis of open source projects. These analyses are
insightful and have served to increase our knowledge

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

8

of how these projects work and coordinate themselves.
In this paper, we go further by performing analysis of
multiple social networks at the same time. We
described our approach, based on a (Starplot)
visualization of social network metrics, as well as, our
tool, Sargas, that can be used to perform this analysis.
We illustrated our approach with a case study of the
PMD project and discussed how our results can be
used to extend the so-called �onion model� open
source participation.

An obvious limitation of our approach, and of all
previous approaches based on social network analysis
of open source projects, is that we are not analyzing
the content of the messages exchanged among open
source members. We are solely focusing on the
structure of the resulting social network. We plan to
perform additional analysis of other open source
projects as well as to improve our approach and tool to
facilitate this analysis.

Acknowledgements

This research was supported by the Brazilian
Government under grant CNPq 479206/2006-6, by the
Universidade Federal do Pará through the PARD and
PIBIC programs, and by a Microsoft grant.

8. References

[1] Wagstrom, P., Herbsleb J. and Carley K. A
Social Network Approach to Free/Open
Source Software Simulation, pp 1, 2005.

[2] Lopez-Fernandez, Luiz, Robles, Gregorio,
Gonzalez-Barahona, Jesus M. Applying
Social Network Analysis to the Information in
CVS Repositories. GSyC, Universidad Rey
Juan Carlos, 2004.

[3] Gloor, P. Swarm Creativity - Competitive
Advantage through Collaborative Innovation
Networks. Oxford University Press, New
York, January 2006.

[4] de Souza, C., Froehlich, J. and Dourish, P.
Seeking the Source: Software Source Code as
a Social and Technical Artifact. Sanibel
Island, FL: s.n., ACM Conference on Group
Work, 2005.

[5] Jensen, C. and Scacchi, W. A Reference
Model for Discovering Open Source Software
Processes. Limerick, IR. Third IFIP
International Conference on Open Source
Systems, 2007.

[6] Halloran, T. and Scherlis, W. High Quality
and Open Source Software Practices.
Orlando, FL: s.n., Workshop on Open Source
Software Engineering, 2002.

[7] Ducheneaut, N. The Reproduction of Open
Source Software Programming Communities.
Berkeley, CA: UC Berkeley, School of
Information Management and Systems, 2002.

[8] Jensen, C. and Scacchi, W. Role Migration
and Advancement Processes in OSSD
Projects: A Comparative Case Study.
International Conference Software
Engineering. 2007.

[9] Gao, Y. and Madey, G. Network Analysis of
the SourceForge.net Community. Limerick,
Ireland: s.n., International Conference on
Open Source Systems, 2007.

[10] Chambers, Cleveland, Kleiner, and Tukey,
Wadsworth. Graphical Methods for Data
Analysis, 1983 (pp. 160-161).

[11] Kadushin, C. Introduction to Social Network.
February 17, 2004.

[12] Stephenson, Karen and Marvin Zelen.
Rethinking Centrality: Methods and
Examples. In Social Networks 11. (North-
Holland: Elsevier Science Publishers B.V.,
1989) pp. 1-37.

[13] Wasserman, S. and Faust, K. Social Network
Analysis: Methods and Applications.
Cambridge, UK and New York: Cambridge
UniversityPress, 1997.

[14] Hanneman, R. and Riddle, M. Introduction to
Social Network Methods. Riverside, CA:
University of California, 2005.

[15] Fisher, D., et al. Analysis and Visualization of
Network Data Using JUNG. Java Universal
Nerwork/Graph Framework. [Online]
http://jung.sourceforge.net/doc/JUNG_journal
.pdf

[16] Borgatti, S., Everett, M. and Freeman, L.
UCINET 6 Social Network Analysis
Software. Analytic Technologies -- Social
Network Analysis& Cultural
DomainAnalysis. 2006.

[17] Crowston, K. and Howison, J. The Social
Structure of Open Source Software
Development Teams. Seattle, WA: s.n.,
International Conference on Information
Systems, 2003.

[18] Balieiro, M. A.; Sousa Jr, S. F.; de Souza, C.
R. B. Facilitating Social Network Studies of

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

9

FLOSS using the OSSNetwork. In:
International Conference on Open Source
Systems, 2008, Milan. Proceedings of
International Conference on Open Source
Systems, 2008.

[19] Zimmermann, T., P. Weibgerber, et al.
(2005). "Mining Version Histories to Guide
Software Changes." IEEE Transactions on
Software Engineering 31(6): 429-445.

[20] Cataldo, M., P. A. Wagstrom, et al. (2006).
Identification of Coordination Requirements:
implications for the Design of Collaboration
and Awareness Tools. 20th Conference on
Computer Supported Cooperative Work.
Banff, Alberta, Canada, ACM Press.

[21] PMD Project. Available in
http://pmd.sourceforge.net. Access on
September 17.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

10

