Dynamics of innovation in an "open source" collaboration environment: lurking, laboring, and launching FLOSS projects on SourceForge

TitleDynamics of innovation in an "open source" collaboration environment: lurking, laboring, and launching FLOSS projects on SourceForge
Publication TypeJournal Article
Year of Publication2008
AuthorsDavid, PA, Rullani, F
Secondary TitleIndustrial and Corporate Change
Volume17
Issue4
Pagination647 - 710
Date Published07/2008
ISSN Number1464-3650
Keywordscontributors, core, developers, roles, SFnetDataset, sourceforge, users, virtual communities, virtual organization, virtual organizations
Abstract

A systems analysis perspective is adopted to examine the critical properties of the Free/Libre/Open Source Software (FLOSS) mode of innovation, as reflected on the SourceForge platform (SF.net). This approach re-scales March's (1991) framework and applies it to characterize the “innovation system” of a “distributed organization” of interacting agents in a virtual collaboration environment, rather than to innovation within a firm. March (1991) views the process of innovation at the organizational level as the coupling of sub-processes of exploration and exploitation. Correspondingly, the innovation system of the virtual collaboration environment represented by SF.net is an emergent property of two “coupled” processes: one involves the interactions among agents searching the locale for information and knowledge resources to use in designing novel software products (i.e., exploration), and the other involves the mobilization of individuals’ capabilities for application in the software development projects that become established on the platform (i.e., exploitation). The micro-dynamics of this system are studied empirically by constructing transition probability matrices representing the movements of 222,835 SF.net users among seven different activity states, which range from “lurking” (not contributing or contributing to projects without becoming a member) to “laboring” (joining one or more projects as members), and to “launching” (founding one or more projects) within each successive 6-month interval. The estimated probabilities are found to form first-order Markov chains describing ergodic processes. This makes it possible the computation of the equilibrium distribution of agents among the states, thereby suppressing transient effects and revealing persisting patterns of project joining and project launching. The latter show the FLOSS innovation process on SF.net to be highly dissipative: a very large proportion of the registered “developers” fail to become even minimally active on the platform. There is nevertheless an active core of mobile project joiners, and a (still smaller) core of project founders who persist in creating new projects. The structure of these groups’ interactions (as displayed within the 3-year period examined) is investigated in detail, and it is shown that it would be sufficient to sustain both the exploration and exploitation phases of the platform's global dynamics.

Notes

"For the purposes of this study, we are able to draw upon micro-level data pertaining to the activities undertaken during the period between the beginning of September 2000 and December 2002 by the entire cohort of 222,835 individuals who had registered on SF.net during the 14 months from September 1, 2000 through October 26, 2001."
"The statistical analysis in this article is based upon an edited dataset (referred to here as the SFnetDataset) covering the SourceForge cohort of 222,835 individuals who registered on SF.net during the 14 months from September 1, 2000 through October 26, 2001."
They appear to be using their own dataset which is from 2000-2001 even though this paper is from 2008

DOI10.1093/icc/dtn026
Short TitleIndustrial and Corporate Change
Full Text