
Estimating Development Effort in Free/Open Source
Software Projects by Mining Software Repositories: A

Case Study of OpenStack

Gregorio Robles, Jesus
M. González-Barahona,

Carlos Cervigón
GSyC/LibreSoft

Universidad Rey Juan Carlos
Madrid, Spain

{grex,jgb,ccervigon}@gsyc.urjc.es

Andrea Capiluppi
Information Systems and

Computing
Brunel University

London, UK
andrea.capiluppi@brunel.ac.uk

Daniel
Izquierdo-Cortázar

Bitergia S.L.
Madrid, Spain

dizquierdo@bitergia.com

ABSTRACT
Because of the distributed and collaborative nature of free
/ open source software (FOSS) projects, the development
effort invested in a project is usually unknown, even after
the software has been released. However, this information
is becoming of major interest, especially —but not only—
because of the growth in the number of companies for which
FOSS has become relevant for their business strategy. In
this paper we present a novel approach to estimate effort by
considering data from source code management repositories.
We apply our model to the OpenStack project, a FOSS
project with more than 1,000 authors, in which several tens
of companies cooperate. Based on data from its repositories
and together with the input from a survey answered by more
than 100 developers, we show that the model offers a simple,
but sound way of obtaining software development estimations
with bounded margins of error.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Time esti-
mation

General Terms
Economics, Measurement

Keywords
Effort estimation, open source, free software, mining software
repositories

1. INTRODUCTION
Traditional, effort estimation is generally used by compa-

nies in the early stages of a project to estimate the number

Preprint version. Final version to appear on the Proceedings of the 11th
Working Conference on Mining Software Repositories (MSR’14).
MSR ’14. Preprint version
Please, refer to the conference paper for citations..

of developers and the amount of time that it will require to
develop a software. Once the project is over, the estimations
are no longer needed, because companies usually know the
actual effort devoted.

In free / open source software (FOSS) projects, volunteer
developers may co-operate with others paid by companies
to work on the project [9]. In these cases the total amount
of effort invested in the project is usually not known even
afterwards.

FOSS projects gained relevance in the late 1990s. Since
then, the amount of companies involved in FOSS projects has
been growing, and new collaborations have emerged. While
during its beginnings FOSS was mostly developed by volun-
teers, nowadays the collaboration between developers is more
varied, and projects range from those still developed only
by volunteers, to those which are based on the collaboration
of companies with volunteers (e.g., GNOME, Linux), to the
clear industrial ones, in which the main driving force are
companies (e.g., WebKit or OpenStack) [11, 7].

In the case of a company participation, obtaining overall
the development effort for a certain period of time, which is
usually an important measure for a company, is not straight-
forward. Individual companies are usually aware of the effort
they put into projects, but they do not have a clear picture
of the effort by the rest of the community, including other
companies collaborating in the same project.

Not only the companies involved in FOSS development are
interested in estimating effort in FOSS projects: foundations
that act as umbrellas for many FOSS projects have also
interest in this data, as it may offer insights into the project
and attract industrial interest [22].

In this paper we present a quantitative approach to effort
estimation, based on the observation of real development
work. For estimating effort in a project, we calibrate a gen-
eral model, based on measurements, with the aim of limiting
the margin of error and obtaining a good estimation. The
estimated effort takes into consideration (i) the individuals
who do not dedicate their whole work-day to FLOSS de-
velopment, and (ii) developers -hired by companies or not-
that work full-time in the project. The challenge consists in
selecting the appropriate measurements for estimating the
work performed, and in mapping such work to developers in
a unique way, considering the extremely different working
patterns observable in FOSS projects [24, 23, 15, 5].

Our model examines and estimates the effort from the
activity tracked in a project’s source code repository. In
particular, a simple method is sought, so that a reasonable
estimation should be obtained from mining of the source code
repository. Apart from specific tasks that require human
interaction, the proposed method is completely automatable.
Two main measurements of activity will be used: (1) the
number of changes to source code (commits) per developer
(as a proxy of the amount of activity per person), and (2) the
number of days with commits per person (as a proxy of the
time periods when a person is actively developing software).

A part of the study was a survey sent to developers of
OpenStack, asking for the effort they devoted to the project.
These results were used both to calibrate our estimation
model, and to validate the results of its application.

The rest of this paper comprises the following: in the next
section, the model for effort estimation is presented. Then,
we introduce OpenStack, the software project used as a case
study. Being our approach of empirical nature, we offer in
section 4 some details about the experimental design, which
includes details on the survey that was sent to OpenStack
developers. The next section is devoted to the analysis of
the parameters of the model that provide estimations with
minor margin of error. The parameters obtained will be used
to obtain some estimations (section 6). Our approach is then
validated. Section 8 presents the related research; threats to
validity follow. Conclusions are finally given and avenues for
future work discussed.

2. MODEL
In this section, a model for estimating the effort based

on tracing the developers’ activity is presented. This model
translates the activity of a developer, as recorded in the
source code management system, into effort measured in
person-months. Although there are other development repos-
itories where developer activities can be tracked, we have
found that the results obtained from SCM systems are good
enough to produce a reasonably accurate estimation of effort,
as will be shown below.

When mapping the activity traces to effort, the main issue
to be solved is that the activity can be traced only in certain
points in time (e.g., when a commit is introduced into the
code base). The information about how long a developer has
devoted to produce the contribution is completely missing.

It is well known that contributions to FOSS projects are
not uniform: a few developers are responsible for a major
amount of the work, while a large number of developers
contribute with a comparatively small one [18, 20]. So, one
of the problems when measuring effort of the overall FLOSS
development process consists in translating the uneven nature
of contributions [12] into a consistent estimation model.

Inferring the effort devoted by regular and occasional con-
tributors is not easy, and in addition is a source of high
inaccuracies. However, it is known that there are developers
working full-time on the project, usually but not necessarily
hired by companies. Based on the normal work hours in a
paid job, we can assume that these developers devote to the
project around 40h/week. We could also estimate for them
one person-month of effort with a low margin of error. Thus,
the model we propose is based at first on identifying those
developers that collaborate full-time in the project.

We base our approach on two assumptions:

• With good precision, we can identify those developers
working full-time on the project. If that is the case,
those developers can be considered to devote one person-
month (i.e., 40h/week) of effort during the months they
work full-time in the project.

• The number of contributions by full-time developers
is sufficiently large: conversely, the other developers
contribute a relatively small amount of effort to the
project. Since the contributions by the rest of develop-
ers are small, even gross estimations of it, which could
have a relatively large error, will have a little influence
in the total estimation error.

As an example, let’s imagine a project P with 1,000 devel-
opers of which 100 can be identified as full-time. As each
month we assign one person-month to each full-time devel-
oper, we would have a total effort of 100 person-months from
these developers every month. If the 100 full-time develop-
ers author 90% of the contributions to the project in that
month, we could estimate the contribution of the rest of the
developers in the range of 10 person-months.

The total estimation for the project in a month would then
be 110 person-months, which is composed of a larger part
(around 100 person-months) in which the margin of error is
small; and a smaller part (around 10 person-months) where
the margin of error can be large.

At the current state of our research we are not able to pro-
vide a value to the margin of error of our estimation. Given
the proportion between the efforts involved, we can state
that the large error introduced by occasional contributors is
mitigated by the fact that its weight on the total effort is low.
Hence, in our previous example, the effect of a 20% margin
of error for the effort estimated by full-time contributors is
equivalent to a 100% margin of error by the rest.

In order to identify the full-time developers, we have used
two possible measures for each developer:

• Number of commits merged in the code base during a
given period.

• Number of active days during a given period, considered
as days in which the developer performs at least one
commit to the code base.

In both cases, the model is based on finding a threshold
value t for the number of commits (or active days) for which
we identify full-time developers with a minimum error, while
the number of non-full-time developers identified by mistaken
is very low. Ideally, activity of all full-time developers would
be above t while non full-time developers would stay below it.
In the real cases, the error for mistakenly identified full-time
and non full-time developers should be estimated, with the
aim of keeping it as low as possible.

In order to calculate values for the threshold t, we sent a
survey to OpenStack developers. In this survey, we asked
them how many hours per week in the mean they spent in
the project in the last six months, as well as how they see
their commitment (full-time, part-time, occasional). This
information is contrasted with the activity of the developer
in the versioning system during the last six months. We
calculate the best fits for several values of t and obtain effort
estimations in person-months.

We would like to point out that we have anecdotal evidence
from some FOSS managers at companies that use what we

could call a naive version of the model for their estimations.
What is done is to assign 1 person-month of effort to any
developer with at least one commit in a month. In our model,
this would be equivalent to have a threshold value of t=1.

3. CASE STUDY
OpenStack is a software project to build a SaaS (software

as a service) platform. Even being a young project, with
its first official release in 2010, over 200 companies have
become involved in the project in such a short period of time.
AMD, Brocade Communications Systems, Canonical, Cisco,
Dell, Ericsson, Groupe Bull, HP, IBM, InkTank, Intel, NEC,
Rackspace Hosting, Red Hat, SUSE Linux, VMware Yahoo!
and many others have been participating in OpenStack since.

First release October 2010
Authors (distinct) 1410
Commits 89,871
Commits (without bots) 68,587
SLoC (approx.) 1,650,000

Table 1: Main parameters of the OpenStack project,
January 2014.

Table 1 provides a summary of the project. There are 1,840
distinct author identifiers in the source code management
system. After applying a merging algorithm [19], manual
inspection and feedback from the community, 1,410 distinct
real authors have been identified, once duplicate ids were
merged. The total number of commits is almost 90,000,
although many of these have been done automatically by
bots.

Bot name Bot mail address
Jenkins jenkins@review.openstack.org
OpenStack Jenkins jenkins@openstack.org
Jenkins jenkins@review.stackforge.org

Table 2: Main bots found as authors in the Open-
Stack source code management.

Table 2 contains the bots that merge commits in the
versioning system. They are responsible for 21,284 commits,
almost 25% of all commits in the project.

OpenStack, as many other FOSS projects, has an uneven
contribution pattern where a small group of developers have
authored a major part of the project. In summary, 80% of
the commits have been authored by slightly less than 8% of
the authors, while 90% of the commits correspond to about
17% of all the authors. We have thus a situation where the
assumptions of our model above are true. In addition, as the
corporate involvement in OpenStack is significant, this should
allow us to identify full-time developers from companies. The
OpenStack Foundation estimates that around 250 developers
work professionally in the project.

4. EXPERIMENTAL DESIGN

4.1 Activity data
This paper presents an empirical approach to measure

the effort within FLOSS projects, based on the number of
commits logged onto the versioning system by the developers
of that project. We base our research on following concepts:

• Commit: action by which a developer synchronizes
a set of changes to the versioning system repository.
A commit is given by a point in time (the timestamp
can be obtained from its metadata), and does not
include information on how much time or effort the
developer has spent on it [1]. In OpenStack commits
require usually to be approved, as a review process is
in practice. This makes contributing a commit a very
elaborated process, slow and with a big granularity (i.e.,
with many files), closer to the traditional Modification
Requests in industry [21] than to commit patterns
found in other FOSS projects.

• Active day: day in which the developer performs at
least one commit to the code base. We have used it as
an alternative measure of activity to commits.

• Committer: developer who performs the commit to
the repository. May not have to be the author of the
changes. In our model, we do not consider committers.

• Author (or developer, or contributor): individ-
ual who contributes the changes, but may not be the
one who performs the commit (which is done by the
committer). Depending on the amount of contributions
(in number of commits or number of active days), we
identified their status as a “full-time” or “non-full-time”
contributor. Depending on their status, the empirical
approach assigns a person-month (PM) for full-time
developers or a fraction of a person-month for the rest.

• Person-Month (PM): measure of effort. We suppose
that a person-month is observed when a developer
devotes the relative amount of time of a 40 hour-week
to the project. Full-time developers hence account for
one PM for each month worked on the project.

• Period of study: timespan during which developers
with more activity than a threshold t will be considered
as full-time developers. Although the natural measure
of the period could be thought to be one month, our
experience has shown that using larger timespans has
many benefits as it smoothens the effect of vacations,
travels, and non-constant work, among others. Being
the release cycle of OpenStack of six months, we have
selected periods of study of that length in order to avoid
influences of the process in our measures. A developer
who surpasses the threshold in the six month period will
be thus considered to have devoted 6 PMs. A developer
with activity a, less than the requited threshold t, will
be assigned an effort of 6 * a / t PMs.

For this study, we have used the data gathered by Bitergia
for the OpenStack Foundation, which has been carefully
curated and validated [13]. The original data is available, as
MySQL database dumps, from the OpenStack Development
Dashboard1. The data has been discussed and commented
with several experts from the OpenStack community to find
issues in it, which have been addressed to improve its quality.

The information from the source code management reposi-
tory is obtained by means of the CVSAnalY tool, which is
part of the MetricsGrimoire toolset2. CVSAnalY retrieved

1http://activity.openstack.org
2http://metricsgrimoire.github.io

information from repositories (in the case of OpenStack,
git repositories) of the project, and stores it in a MySQL
database, ready for analysis.

Real authors of commits, corresponding to persons, are
identified by using several algorithms to merge the different
author identities they may use (usually, different email ad-
dress used as git author identifiers) [19]. This process has
been manually checked and completed. All this work has
been done on the dataset by Bitergia, the company main-
taining the OpenStack Foundation Development Dashboard.
Methods and tools used in the production of the curated
dataset have been discussed and checked by the authors.

4.2 Survey data
To obtain data of the time commitment of the OpenStack

developers, we designed an on-line survey. We obtained
the e-mail addresses of the developers from their authorship
information in the versioning system, and sent them an e-mail
with an invitation to participate.

The questionnaire was composed of two web pages and
contained following questions (information of the page in
which the question appeared and the type of question is
offered in brackets before the question; possible answers are
given in brackets after the question):

• (1, Selection): On average, how many hours in a week
have you spent in the project in the last six months?
(>40h, 40h, 30h, 20h, 10h, <5h)

• (1, Selection): How much of the time you spent in the
project is devoted to coding? (>95%, approx. 75%,
approx. 50%, approx. 25%, <10%)

• (1, Selection): Do you make at least one commit to the
repository the days you code? (yes, no)

• (2, Selection): What do you consider yourself in the
project? (full-time, part-time, occasional contributor)

• (2, Free-text box): Did you always work on the project
the same amount of hours, or did you have different
phases of commitment? If you had different phases,
could you tell us about the various phases? (the graph
below may help you, as it is based in your recorded
activity in the repository)

In the displayed graph, the developer could see a bar-graph
with the amount of commits per month in the versioning
system. In order to obtain clearer phases, we used a Han-
ning window function to smooth the irregularities. In order
to obtain feedback on possible threshold values, we also in-
cluded an horizontal threshold (see green line) to mark when
we considered the developer full-time. Figure 1 shows an
example of such a graph for a developer.

The survey web site3 included information about our re-
search goals, a privacy statement (informing that the survey
data will not be released as it contains personal information
according to the Spanish data protection law) and contact
information.

1407 personalized mails were sent, and the survey was
answered by a total of 131 respondents. From these, we
removed five survey responses because they were empty or
we could see from the answer in the free text box that the

3http://ccervigon.libresoft.es

Figure 1: Personalized activity chart for a developer.

respondent had misunderstood/misinterpreted the questions
(for instance, there was a developer referring to his con-
tributions on the LibreOffice project, not on OpenStack).
We also changed 7 surveys to normalize the set, mainly be-
cause some respondents devoted 40 or more hours a week
to the project mostly in programming, but stated they were
occasional/part-time developers.

5. ANALYSIS
Our model is based on identifying developers as full-time

(or not full-time), so a classification can be performed. We
will have a true positive when we identify a full-time developer
as such; not identifying him/her as such will cause a false
negative. In the case of a non-full-time developer, if we guess
correctly we will have a true negative; otherwise, we will
consider him/her as full-time, and have a false negative.

From the relationship of these values we can infer how
good our classification is using several standard information
retrieval and pattern recognition measures. Figure 2 offers
the most relevant ones: precision, recall, F-measure and
accuracy. These measures depend on the value t chosen as
the threshold. As it can be seen, the recall starts at 1.0 for
t=1, and then decreases steadily to values approximately 0.3
for t=50. Precision, on the other hand, has a value 0.4 for
t=1, and increases to values of 0.8 for t>20.

Figure 3 offers a detailed view of the values of t where
the F-measure and accuracy obtain their maximum values.
The F-measure, which is the harmonic mean of recall and
precision, peaks at t=9 with a value of 0.75. Accuracy is
calculated as:

Accuracy =
tp+tn

tp+tn+fp+fn

and provides another measure used in classification to
determine the quality of the classification criteria. The max-
imum value of accuracy (0.78) is obtained for t=9 and t=10.

Figure 4 provides visual detail on how the classification
is performed and how this affects these measures. On the
left, we can see how the identification of full-time developers
becomes less accurate while the threshold t grows. However,
as can be seen from the figure on the right, for non-full-time

Figure 2: Relevant measures (precision, recall, F-measure, accuracy and goodness) for several values of
threshold t. Figure 3 provides a detail of this graph for values of t between 7 and 15.

Figure 3: Zoom of relevant measures (precision, re-
call, F-measure, accuracy and goodness) for values
of t between 7 and 15.

developers the effect is the contrary: the classifier gets better
with higher values of t. It can be observed that the curve
for non-full-time developers saturates quickly, while the one
for full-time developers decreases more slowly. This means
that there are many non-occasional contributors with a low
number of contributions, while contributions by full-time
developers are almost uniformly spread among all amounts
of contributions.

There is an effect in our effort estimation model that
should be taken into consideration as it is usually not to be

found in information retrieval and pattern recognition: false
positives and false negatives may compensate each other.
This happens because a wrongly classified (false positive)
non-full-time developer is assigned the effort of a full-time
developer; if a full-time developer exists that has been clas-
sified as non-full-time developer (false negative), then this
error is compensated by the former.

Figure 5 presents this situation graphically by subtracting
the number of wrong classified non-full-time developers from
the number of incorrectly classified full-time developers. As
it can be seen, for t=1 no full-time developer has been incor-
rectly classified, but all non-full-time developers have. No
compensation occurs then. However, as t increases the error
of classifying full-time developers incorrectly is compensated
by the error of classifying non-full-time developers. The value
for which the number of non-compensated errors is minimum
corresponds to t=12, where the difference is 1 (i.e., there is
one false negative more than false positives).

Because of this compensation phenomenon, we have con-
ceived a new measure that takes this effect into consideration.
We have called it goodness; it depends on the number of
non compensated classifications (the numerator, an absolute
value, since compensation works both ways) and is normal-
ized by dividing it with the total number of positives and
false negatives. To obtain a value of goodness which becomes
better as it gets closer to 1, we subtract the result of the
fraction from 1. Thus, goodness can be calculated as follows:

Goodness = 1 − |(tp+fp)−(tp+fn)|
tp+fn+fp

where tp stands for true positive, fp for false positive and
fn for false negative. The reader should note that we do
not need to consider true negatives in this measure; true
negatives are given by those non-full-time contributors that
have been correctly categorized. Given that their effect in
our model is assumed to be small, this omission is in line

Figure 4: (l) True positives (tp) and false negatives (fn) for full-time developer identification for several values
of threshold t. (r) False positives (fp) and true negatives (tn) for non-full-time developer identification for
several values of threshold t.

Figure 5: Compensation between false positives and
false negatives for values of t. Negatives values of
the y axis indicate false positives that do not get
compensated by false negatives, while positive val-
ues of the y axis indicate false negatives not com-
pensated by false positives.

with the model.
If all classification errors get compensated, the numerator

of the goodness formula will be 0 and the value of goodness
will be 1. If there are many errors which are not compensated,
the numerator will grow and the resulting goodness would
be low.

Figure 3 shows that the value of goodness peaks at t=12
(0.979). So, even if the F-measure and accuracy have slightly
lower values than their maximum for that threshold, the
error for our effort estimation should be smaller for t=12
due to the effect of compensation that the goodness factor
recognizes.

All in all, our analysis shows that the best effort estimation

can be obtained with threshold values in the range from t=9
to t=12.

A side result of our analysis is that in OpenStack the dif-
ference between using commits or active days as an activity
measure is not significant. Talking with OpenStack devel-
opers about this fact, they recognized that the development
process in OpenStack puts a very high priority on stability.
Thus, code is not formally committed to the repository un-
til it has been through extensive review, usually including
several revisions. This has as a consequence that commits
are larger and more costly (in time and effort) than in other
FOSS projects. This is also the reason why we have obtained
in our analysis threshold values of 9 to 12 commits every
semester to be considered a full-time OpenStack developer, a
number of commits that in other projects is easier to achieve.
Although this does not affect the validity of our case study,
further research should address this issue to offer a general
model.

6. RESULTS
Table 3 shows the results obtained with our approach using

several values of the threshold t. Considering the global effort
through the whole lifespan of the project, we can see that
-as expected- the number of person-months decreases while
the threshold increases. The naive approach, where a single
commit in a semester would have been coded as 6 person-
months, results in 17,400 person-months, which as already
discussed could be considered as an upper bound of the effort.

According to the analysis, the best values for the t thresh-
old are between 9 and 12. For such scenarios, the estimation
of the amount of effort that has invested in the project lies
around 9,000 person-months (750 person-years), which is half
of the estimation value produced by the naive approach.

The table also provides information for every semester.
As it can be observed, the effort devoted to the project is
increasing with time, with a maximum for all the thresholds
in the second semester of 2013. If we take the value of 12 as
the threshold, 2,634 person-months have been working during
the last six months. This implies that we estimate that the
actual effort on OpenStack has been around 440 person-
months during the last six months. When asking OpenStack

members about these figures, they confirmed that they sound
reasonable as the estimation of the OpenStack foundation is
that currently over 250 professional developers work on the
project hired by companies.

t Effort 10s2 11s1 11s2 12s1 12s2 13s1 13s2
1 17400 426 816 1242 1890 2742 4368 5916
2 15255 420 813 1170 1647 2385 3783 5037
3 13804 402 798 1110 1486 2140 3384 4484
4 12747 389 785 1056 1383 1964 3074 4098
5 11891 378 768 1008 1295 1830 2821 3791
6 11213 370 757 964 1224 1726 2618 3554
7 10629 362 743 927 1164 1635 2451 3346
8 10128 355 732 896 1112 1560 2310 3164
9 9683 345 721 866 1065 1493 2189 3003

10 9298 337 711 841 1025 1434 2086 2864
11 8957 330 700 819 987 1381 1997 2743
12 8655 324 690 800 955 1334 1919 2634
13 8370 318 680 782 924 1289 1847 2531
14 8112 313 672 767 896 1247 1781 2437
15 7876 308 663 753 872 1208 1721 2351
16 7662 303 656 740 850 1173 1666 2275
17 7466 298 648 729 830 1140 1615 2206
18 7284 294 641 719 812 1107 1568 2142
19 7109 291 634 708 794 1077 1522 2083
20 6945 288 628 698 777 1048 1481 2025

Table 3: Estimated total effort (in PM), given per
threshold value (column t). Estimated effort values
for all semesters.

On a side note, it should be noted that the ratio between
the effort estimated with the naive approach and the one
with a threshold of 12 is steadily increasing. In the second
semester of 2010 the ratio was 1.31, while for the second
semester of 2013 it has grown to 2.25. This is because the
number of non-full-time contributors has grown as well. Thus
we can see how much the “minor contributors” in the project
affect the estimations given by our model. While the error
(noise) introduced by these small contributions is included
using the naive approach, higher values of t filtered it out.
The result is not only a more realistic estimation, but as well
an estimation where the more error-prone estimations have
a smaller weight in the total effort.

7. VALIDATION

7.1 Share of commits
The approach is valid if the number of commits performed

by those developers which we have identified as full-time
developers consists of a large fraction of the total number of
commits. Figure 6 provides information of this value for the
first 50 values of t. Logically, for t=1 the total number of
the 68,587 commits corresponds to developers identified as
full-time (and thus the share is 1.0). This value decreases as
t grows, but very slowly; for t=12, the share is still over 0.9,
and it stays over 0.8 up to values of t close to 30.

In summary, we see how the amount of work performed
by those who we classify as full-time developers is over 10
times larger for values of t that provide the most accurate
effort estimations (t=9 to t=12). This means that being our
classification accurate, the margin of error that is introduced
by the rest of the effort is bounded.

Figure 6: Share of total number of commits by de-
velopers identified as full-time for several values of
the threshold t.

At this moment, we are unable to calculate with precision
values for margins of error. However, with the current pro-
portion of 10:1, margins of error of the margin of error of the
rest can be up to 5 times the one of full-time developers to
have the same effect on our estimation. So, for a margin of
error of 20% in estimation for full-time developers, we still
could afford a 100% error margin for the rest of developers
so that the global, aggregated estimation of the project error
will be around 25%. This is an important outcome of our
model, and does not depend on the calculation of the margin
of error, which should be addressed as future research.

7.2 Representativeness of the survey sample
The survey provides data of a sampled number of devel-

opers. As we have invited all OpenStack authors to fill out
the survey, the method used has not been random sampling:
survey respondents are self-selected, and thus may not be
representative for the whole population under study.

Figure 7 shows two box-plots with the analysis of the active
surveyed population and all active developers of the project
in the last six months, which is the timespan we asked for in
the survey.

As the normality assumption of the t-test is not given
in our samples, the non-parametric alternative Wilcoxon
signed-rank test (also known as Wilcoxon-Mann-Whitney
test) has been used. The null hypothesis for this test is
that no difference between the two populations exist. When
the p-value for the two-tail hypothesis is larger than the
significance, we conclude that the the null hypothesis cannot
be rejected. This happens for all populations considered with
at least one commit in the time period.

However, we also tested the hypothesis including inactive
developers in the population. In that case, the survey is not
representative and the null hypothesis can be rejected. The
reason for this is that the inclusion of all inactive developers
from all the project history introduces much interference.
This is because the population of former developers is very
different from the current one, so including it in the global
population produces a severe transformation. As our model
is based on activity, this fact is not a threat to its validity, but
a supportive fact, as we perform the classification only with
active developers. Nonetheless, as it can be seen from Table 4,
as the values of activity increase, the survey population
becomes more representative of the project.

Commits Population Min. 1st Qu. Median Mean 3rd Qu. Max. p-value
0 or more all 0.00 0.00 1.00 9.62 6.00 491.00 0.005063

survey 0.00 0.00 4.00 14.12 14.00 201.00
1 or more all 1.00 1.00 3.00 13.76 11.00 491.00 0.2008

survey 1.00 1.00 5.00 16.35 19.00 201.00
5 or more all 5.00 7.00 13.00 29.37 30.00 491.00 0.2822

survey 5.00 8.50 16.50 29.38 34.75 201.00
8 or more all 8.00 12.00 19.00 37.77 41.00 491.00 0.4171

survey 8.00 13.00 22.00 35.57 42.75 201.00
11 or more all 11.00 14.75 24.00 44.34 52.00 491.00 0.9797

survey 11.00 14.00 26.00 38.83 50.00 201.00

Table 4: Summary of population measures. Several populations have been selected, depending on a minimum
number of commits. p-value as given by the Wilcoxon signed-rank test.

Figure 7: Boxplot with the activity (in number of
commits during the last 6 months of 2013) for active
surveyed developers and for all the active OpenStack
developers in the last 6 months. Outliers with more
than 50 commits are not shown.

8. RELATED RESEARCH
Effort estimation in FOSS projects has been the matter of

research in several studies. The closest ones to the approach
present in this paper are those that try to characterize de-
velopers in order to infer the effort devoted, as done in [1,
17, 5].

Amor et al. [1] propose to characterize the complete devel-
oper activity (versioning system, mails, bug-tracking system,
etc.) in order to obtain a measure of the total effort invested
in the project. This idea is extended by Kalliamvakou et al.
in [17]. In comparison to our approach, this is a comprehen-
sive focus that needs to gather data from many sources, and
with the problem of estimating micro-contributions.

Capiluppi et al. [5] characterize the Linux kernel by the
time in a day when the commits are observed in the repository,

and when the author works most frequently. They divide
a working day in traditional Office Hours (OH, from 9am
to 5pm), After Office hours (AO, 5pm to 1am), and Late
Hours (LH, from 1am to 8am). The authors present evidence
that throughout the week the effort within the Linux kernel
community is constant, different from the ones traditionally
used in industrial settings where work is assumed 9am-5pm,
Monday to Friday. The approach presented in this paper is
based on the idea of characterizing developers, although we
do this in a different way.

Most of the effort estimation techniques are based on
statistical methods. So, Koch et al. tried to obtain effort
estimation based on the Pareto distribution found in FOSS
projects [18]. Fernandez-Ramil et al. note that traditional
software effort estimation methods such as COCOMO do
not fit well FOSS projects and study effort using linear
regression models [10]. Linear regression is as well the method
used by Yu to predict indirectly maintenance effort in FOSS
projects [25]. Anbalagan et al. have worked on predicting
how much time developers spend in corrective maintenance
of FOSS projects [2].

There are several studies that analyze how effort in FOSS
is related to other aspects of the development process. In this
sense, Capra et al. discuss and investigate empirically how
governance, process and design quality affect development
effort in FOSS projects [7]. In [8] evidence is shown that
in FOSS projects the maintenance effort is lower than in
industrial projects due to the fact that they are less prone
to software decay.

For a detailed, systematic review of software development
effort estimation studies we refer to [16].

9. THREATS TO VALIDITY
All empirical studies, such as this one, are subject to

threats to validity. In this section, we discuss how to mitigate
or control these threats if possible.

Conceptual Assumptions and assertions have been done.
We have tried to make them explicit, as for instance the
assumptions that a person-month equates to 40h/week. Some
of them may require further support, but this does not
invalidate the plausibility of the argument.

Construct A replication package4, following the guide-
lines in [14], is offered to others to reproduce our findings.
The replication package contains all scripts and public in-
formation, but not all the results of the survey, as personal

4http://gsyc.urjc.es/~grex/repro/2014-msr-effort

information was collected. Aggregated and anonymized in-
formation from the survey is available.

Internal Having only considered one of the many sources
of activity (and data) may result in our estimation model
being not accurate. Further work is expected to be of broad
interest and supportive of the claims presented.

External OpenStack was chosen as the illustrative case
study. We consider that this project is representative of
many FOSS projects, especially those where many industry
players cooperate. There may be certain practices that could
only be found for OpenStack: for instance, their review
process produces large (and few) commits, so values for
threshold should be selected differently for other FLOSS
projects. This remains to be investigated. However, as
Bird and Zimmermann [4] do, we refer to the importance
of the detailed study of a single project and that it is a
misconception that this type of studies do not provide to the
academic community any value, nor contribute to scientific
development.

10. CONCLUSION, DISCUSSION AND FU-
TURE WORK

Differently from other effort estimation research attempts,
this paper tackles two challenges. The first is how to design a
simple, but sound approach to measure the effort provided in
a sparse, distributed and uneven development scenario, like
the FOSS one. This is achieved by evaluating the activity of
developers and identifying what authors could be considered
as “full-time” developers, and separating them from the other
contributors. The activity of full-time developers is assigned
one person-month per month in the period of study; other
developers are assumed to be working less than a full month
on a project, hence a fraction is assigned to them.

The second challenge is how to design the model so that
it offers a reasonable prediction. This affects primarily two
aspects of the model: (1) the activity threshold to consider
a developer as full-time or not, and (2) the credibility of the
model. For the calculation of a threshold, we have obtained
data from over a hundred developers, and we used traditional
classification techniques to select the optimal threshold value.
In addition, we have seen that the design of the model allows
to compensate erroneous classifications of developers.

Regarding the credibility of the model, we observe that
the surveyed developers are representative of the project, re-
sulting in threshold values with high confidence. In addition,
since the majority of the effort is performed by those above
the threshold, we could limit the overall margin of error by
specifically focusing on those developers’ activities. This also
limits the challenges in effectively measuring the activity of
occasional, sporadic contributors, since their contributions
are relatively low. As we have seen with our case study, the
threshold calculation allows to identify with precision many
full-time developers that account for approximately 90% of
the total activity. This means that we have a large share of
the effort in a reasonable confidence interval, and can narrow
the effect of the rest of contributors.

The model is concerned exclusively with effort performed
by developers. There are many other tasks in a FOSS project
that are not considered in it, such as translation activities,
art & graphic design, or documentation, which may follow
different procedures. The effort devoted to community man-
agement and other community-related activities are also

beyond the scope of our model.
We envisage to expand this study by 1) studying other

FOSS projects to ascertain if our method is applicable in
general, and if it is to what extent; 2) performing a scientific
experiment to obtain margins of error for the estimation of
error for full-time developers; 3) investigating, by taking into
consideration other FOSS projects, which of the two ways of
measuring activity (commits or active days) is more suited for
the model; 4) comparing our results with the ones provided
by traditional software estimation models used in industry,
such as COCOMO; 5) after quantifying the effort required
in a FOSS project, is it more profitable for a prospective
adopting company to redo (“make”) their own system, or
to invest (“buy”) in the existing FLOSS system as is [3]?
6) comparing our approach with previous effort estimation
techniques for FLOSS projects, as the one proposed in [6]
based on the measure of entropy to calculate maintenance
costs.

11. ACKNOWLEDGMENTS
The work of Gregorio Robles, Carlos Cervigón and Jesús M.

González-Barahona has been funded in part by the Spanish
Government under project SobreSale (TIN2011-28110). The
work of Daniel Izquierdo has been funded in part by the
Torres Quevedo program (PTQ-12-05577). Our gratitude to
all the OpenStack developers for their help and feedback.

12. REFERENCES
[1] J. J. Amor, G. Robles, and J. M. Gonzalez-Barahona.

Effort estimation by characterizing developer activity.
In Proceedings of the 2006 international workshop on
Economics driven software engineering research, pages
3–6. ACM, 2006.

[2] P. Anbalagan and M. Vouk. On predicting the time
taken to correct bug reports in Open Source projects.
In Software Maintenance, 2009. ICSM 2009. IEEE
International Conference on, pages 523–526. IEEE,
2009.

[3] J. Asundi. The need for effort estimation models for
open source software projects. ACM SIGSOFT
Software Engineering Notes, 30(4):1–3, 2005.

[4] C. Bird and T. Zimmermann. Assessing the value of
branches with what-if analysis. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, page 45. ACM,
2012.

[5] A. Capiluppi and D. Izquierdo-Cortázar. Effort
estimation of FLOSS projects: a study of the Linux
kernel. Empirical Software Engineering, 18(1):60–88,
2013.

[6] E. Capra, C. Francalanci, and F. Merlo. The economics
of open source software: an empirical analysis of
maintenance costs. In Software Maintenance, 2007.
ICSM 2007. IEEE International Conference on, pages
395–404. IEEE, 2007.

[7] E. Capra, C. Francalanci, and F. Merlo. An empirical
study on the relationship between software design
quality, development effort and governance in Open
Source Projects. Software Engineering, IEEE
Transactions on, 34(6):765–782, 2008.

[8] E. Capra, C. Francalanci, and F. Merlo. The economics
of community open source software projects: an

empirical analysis of maintenance effort. Advances in
Software Engineering, 2010, 2010.

[9] L. Dahlander and M. G. Magnusson. Relationships
between open source software companies and
communities: Observations from Nordic firms. Research
Policy, 34(4):481–493, 2005.

[10] J. Fernandez-Ramil, D. Izquierdo-Cortazar, and
T. Mens. What does it take to develop a million lines of
Open Source code? In Open Source Ecosystems:
Diverse Communities Interacting, pages 170–184.
Springer, 2009.

[11] B. Fitzgerald. The transformation of Open Source
Software. Mis Quarterly, pages 587–598, 2006.

[12] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles.
Free/libre and open source software: Survey and study,
2002.

[13] J. Gonzalez-Barahona, G. Robles, D. Izquierdo, and
S. Maffulli. Using software analytics to understand how
companies interact in free software communities. IEEE
software, 30(5):38–45, 2013.

[14] J. M. González-Barahona and G. Robles. On the
reproducibility of empirical software engineering studies
based on data retrieved from development repositories.
Empirical Software Engineering, 17(1-2):75–89, 2012.

[15] I. Herraiz, G. Robles, J. J. Amor, T. Romera, and J. M.
González Barahona. The processes of joining in global
distributed software projects. In Proceedings of the 2006
international workshop on Global software development
for the practitioner, pages 27–33. ACM, 2006.

[16] M. Jorgensen and M. Shepperd. A systematic review of
software development cost estimation studies. Software
Engineering, IEEE Transactions on, 33(1):33–53, 2007.

[17] E. Kalliamvakou, G. Gousios, D. Spinellis, and
N. Pouloudi. Measuring developer contribution from
software repository data. MCIS, 2009:4th, 2009.

[18] S. Koch and G. Schneider. Effort, co-operation and
co-ordination in an open source software project:
GNOME. Information Systems Journal, 12(1):27–42,
2002.

[19] E. Kouters, B. Vasilescu, A. Serebrenik, and M. G.
van den Brand. Who’s who in GNOME: Using LSA to
merge software repository identities. In Software
Maintenance (ICSM), 2012 28th IEEE International
Conference on, pages 592–595. IEEE, 2012.

[20] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. ACM Transactions on Software
Engineering and Methodology (TOSEM), 11(3):309–346,
2002.

[21] A. Mockus and L. G. Votta. Identifying reasons for
software changes using historic databases. In Software
Maintenance, 2000. Proceedings. International
Conference on, pages 120–130. IEEE, 2000.

[22] D. Riehle. The economic case for Open Source
foundations. Computer, 43(1):86–90, 2010.

[23] S. K. Shah. Motivation, governance, and the viability
of hybrid forms in open source software development.
Management Science, 52(7):1000–1014, 2006.

[24] G. Von Krogh, S. Spaeth, and K. R. Lakhani.
Community, joining, and specialization in open source
software innovation: a case study. Research Policy,

32(7):1217–1241, 2003.

[25] L. Yu. Indirectly predicting the maintenance effort of
Open-Source Software. Journal of Software
Maintenance and Evolution: Research and Practice,
18(5):311–332, 2006.

